A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. Vol. XXVIII .-- No. 25. NEW YORK, JUNE 21, 1873. # NEW DOUBLE SPINDLE IDRILL. We present herewith an engraving of a spindle drill which has been recently introduced into the market, and which, we learn, is coming largely into use for locomotive and rail-road shops. The chief point of advantage to be noted is that both drills, having an automatic feed, can be attended by a single workman. The drills are also entirely indepen-dent of each other, and both can be moved to either end or Jersey City, N. J., has lately patented a bath tub for birds, any point in the frame. The table is so arranged as to rise in which a hood covers the water dish. The entrance is at ### Patent Bath Tub for Birds, The shyness of birds in performing their ablutions is well known; but until A. D. 1873, no inventor has applied his which, when the vessel is being emptied of its liquid, are pressed upon by the bail, thus holding the lid in place. the side of the pot is made a projection, to which a handle is applied and the utensils thus readily tilted. Patented Sept. 17, 1872, by Mr. W. W. Tice, of California, Ohio. # The Origin of Mountains. Professor James D. Dana contributes to the American Journal of Science and Arts a very learned treatise on some upon the table against an angle plate, and all the holes, for nine feet, drilled without moving the work; this, we under-stand, has been accomplished. The table is made long enough to move the locomotive frame on end to drill the balance of the holes The machine has also been found to save a great amount of labor in drilling the bottom rings around the locomotive boiler furnace, where many holes have to be placed. It is stated, by a party using two of these drills, that one man is running all four of the spindles on water bottoms. To Mr. W. S. Hudson, superintendent of the Rogers Lo-comotive and Machine Works, is due the credit of having aggested the idea and produced the plans which were the eriginal of this machine. For further information address & Jones, makers of machinists' tools, Wilmington, Del # An Invention Wanted. A correspondent, L. L. B., says: "Plowshares, as now used, are enough to make any farmer complain, especially if they are steel ones, which are generally ruined after being sharpened once. The cast steel ones will not scour in black lands. Why could not the share be made smaller, so that it would not be necessary to weld a plate of iron on it? The share and point might be made of two pleces, and the point used in some way to fasten the share. Plugs or wedges could be used instead of bolts, which are so placed that they # IMPROVED COOKING VESSEL. This is an ingenious device, which may be easily arranged and fall to suit the work to be operated upon. The tool is one end only, and birdy creeps therein, as into a diminutive results of the earth's contraction from cooling, including a ciaimed to have all the advantages of two complete drill bath room, to enjoy a swim, without spattering the cage, in presses. The side frames of a locomotive may be placed water not solled by matter falling from the perches. earth's interior. In speaking of the kinds and structure of mountains, he draws a hitherto neglected distinction between: 1. A simple or individual mountain range or mass which is the result of one process of making, like an individual in any process of evolution, and which may be distinguished as a monogenetic range being one in genesis; and 2. A composite or polygenetic range or chain made up of two or more mono-genetic ranges combined. The Appalachian chain—the mountain region along the Atlantic border of North America is a polygenetic chain and consists of several other ranges, principal among which are the Green Mountains, the Alleghanies and the Highland, including the Blue Ridge and Adirondacks. Of these the first was completed essentially after the lower silurian era, the second immediately after the carboniferous era, and the third are pre-silurian in formatio Mountain making is shown to be very slow work. After the begining of the primordial, the first period of disturbance of North America of special note was that at the close of the lower silurian, when the Green Mountains were finished. This interval between the beginning of the primordial and the metamorphism of the above range was at least 10,000,000 years. The next epoch of great disturbance in the same Appalachian region was that at the close of the carboniferous era, in which the Alleghanies were folded up; and altogether it is stated that the Appalachians were at least 35,000,000 years in making. The displacements of the Connecticut river sandstone and the accompanying igneous are hard to unscrew. Would not such a contrivance be as in connection with any ordinary pot, serving to retain the ejections, which occurred before the cretaceous era, took successful as the movable saw teeth? I think so. If such a lid white draining the water from the contents. It consists place for some 7,000,000 years after the Appalachian revolting could be made, it would be one of the most paying in attaching to the cover two lugs or care, A, by which the bail is supported in convenient position for grasping, and sure resulting from the earth's contraction required an exof the beds, and to start off a new range of prominent elevations over the earth's crust, Scientific American. MUNN & CO., Editors and Proprietors. NO. 37 PARK ROW, NEW YORK. | O. D. MUNN, | A. E. BEACH. | |--------------------|---------------| | One copy, one year | 83 00
1 50 | VOL. XXVIII., No. 25. [New Series.] Twenty-eighth Year NEW YORK, SATURDAY, JUNE 21, 1878. ### Contents. | (Illustrated articles are | marked with an asterisk. | |---|--| | A B C process, the American institute fair, the American institute fair, the American Anesthetics
Answers to correspondents Bath tub for Birds Beits, a new preventive for slip- ping. Beits, a new preventive for slip- ping. Beits, the power transmitted by Roller explosion at Syracuse Russiness and personal. Canal in Scotland, ship. Carmine. manufacture of. Chicago industrial exposition, the Scheduler experience of the control of the control Diseases, prevention of artisans Diving beits Electricity on metals, the effect of Elevator, car and passenger* Signature of the control | Marnette needle, the diurnal variation of the alton of the Mountains, the origin of Section of the Section of the Section of the Section of Sec | | Envelope, lock* | Spindle drill, double* 38 | | Gelatin, preparation of | Spindle step, Improved* | | Horse power | Tanite grinder and table* | | | Thick evlinders 38 | # THE DIGESTIVE APPARATUS. It has rightly been said that the greatest object of study for man is man himself; this is true in a physical as well as in a moral sense. The human body, indeed, is almost a universe in itself, including many kinds of physical apparatus, statical, dynamical, hydraulic, chemical, optical, electrical, etc. The system of bones and muscles gives an example of the most perfect statical and dynamical arrange ment; the heart, arteries, etc., of an admirable system of hydraulic contrivances; the digestive apparatus is a most complete chemical laboratory in itself, by which the mate rial called food is metamorphosed into the living tissue of which man consists. We have, on a former occasion, glanced over the most striking features of man's hydraulic system, of which the heart is the main organ; let us now take a glance at the chemical laboratory which we carry with us, of which the stomach is the main organ, and which, as well as the circulation of the blood, is carried on incessantly, independently of our will and, when perfect, even without our The stomach is only one of the organs necessary for digestion. This operation, indeed, commences in the mouth and extends nearly throughout the whole length of the socalled alimentary canal, which is about twenty-five feet long, and presents a surface, to be acted upon by the food, of some 4,000 square inches. In the mouth the food undergoes two operations, one mechanical and another chemical. The movements of the teeth, aided by the tongue, grind it up into small particles of proper size, while the simultaneous intermixture of the liquids secreted from three pair of salivary glands constitute the first chemical operation. Coated with a glary juice, the food passes along the œsophagus into the stomach (which is only an expansion between the œsophagus and the duodenum); this consists of three coats, one mucous, one muscular, and one serous, which is exterior. The interior or mucous coat has a velvety appearance, and is folded in wrinkles, so as to admit of much extension. When thus extended, certain appendages are stimulated and secrete three more liquids required for digestion. They are the gastric, pancreatic, and biliary juices. The chemistry of these different agents, in the process of digestion has, during our time, been most minutely investigated. The saliva consists of a mixture of liquids, which differ for each of the three pairs of glands from which they originate; to these a fourth liquid is added, the buccal, ding from the lining membrane of the whole mout this mixture has the capacity of changing starch into grape sugar and, further, into lactic acid, which is essential to normal digestion. At the same time, the atmospheric oxygen is entangled in the saliva during mastication, and exerts an important influence in promoting the action of the saliva and gastric juice in the stomach. The practical lesson which we draw from these well estab lished facts are most important in a hygienic point of view. It deeply impresses us with the importance of well chewing our food, and with the injury which we do ourselves by eating hastily, by washing down imperfectly masticated food the most injurious of all) by indulging in the bad habit of of the same on a really large scale in this country. spitting, and thus intentionally wasting one of the main substances required for a healthy digestion. The result of the ceedingly long era in order to accumulate force sufficient kidneys, and a consequent increase of the saline ingredients | same as introduced by Pfanmuller nineteen years ago ceedingly long era in order to accumulate force to produce a general yielding and plication or displacement in the saliva, the salivary glands being thus induced to take claims the origination of the idea, and not its mere application, and hence considers that Colonel Roebling does him an up part of the functions of the kidneys; and, as Dr. John W. Draper very forcibly remarks, the dirty habit of pro-fuse spitting results in "a partial conversion of the mouth into an urinary aqueduct." Another important fact has been discovered by physiolo- Scientific American. gists, namely, that the saliva of an infant, before it has its teeth, is incapable of converting starch into sugar. This explains at once why all attempts of substituting farinaceous food in place of mother's milk, in the case of infants, invariably fall; such children cannot digest starch, and are underfed, or even starved, dying finally of marasmus. Starch, arrowroot, sago, tapioca, etc., are useless, because indigestible, for children before they have cut their teeth. The gastric juice, which is the principal ingredient for di- gestion, consists chiefly of the solution of a substance which has been called pepsin, and is remarkable from the fact that it contains nearly two per cent of nitrogen, a larger amount than any other substance in the body. The gastric juice behaves, chemically, like a very strong acid, dissolving zinc and iron under evolution of hydrogen; and its digestive power is impeded by the presence of any alkaline salt, while it is increased by the presence of fat. The interior mucous membrane of the stomach, in which this gastric juice performs its functions, is reticulated; and at the bottom of each compartment are the mouths of the so called follicles which, when seen under the microscope, resembles the fingers of a glove; and every stomach con-tains perhaps a million of them, each performing its absorbent function, as the polype extracts the nutritious parts of the food which he envelopes with the bag of which he consists, rejecting afterward the undigested portion. A human stomach may thus be considered as a colony of polypæ, which do not labor for their own sole benefit, but (under the control of the vitality of the individual) for the good of all, and of the body which they are destined to maintain. # THICK CYLINDERS. A cylinder exposed to internal strain, if composed of clastic material, is stretched before rupture. The inner portion of the cylinder is stretched more than the outer; and the amounts of extension of the inner and outer portions will vary as their lengths. For instance: if the outer circumference of a cylinder is three times as great as the inner circumference, and, by the application of pressure, the inner circumference is stretched one thirtieth of its length, the outer circumference will be stretched one ninetieth of its length. It is easy to see, then, that all parts of a cylinder do not bear equal portions of the strain, and that the interior may be stretched to the point of rupture without an excessive strain being put upon the outer portion. It is found that the resistances of the different portions of a cylinder, subjected to internal pressure, vary inversely as the squares of their distances from the center; and an application of this principle will give the following rule for determining the rupturing strain per square inch: Multiply the tenacity of the material in pounds per square inch by the thickness of the cylinder in inches, and divide the product by the sum of the thickness and the internal radius in inches. This rule may be thus expressed: $P = \frac{T \times t}{r + t}$, where P is the rupturing pressure per square inch, T, the tenacity of the material, t, the thickness, and r, the internal radius. Where the thickness is small in comparison with the internal diameter, $\frac{T \times t}{r+t}$ is nearly equal to $\frac{T \times t}{r}$, which is the formula usually employed to find the bursting strain of a thin cylinder, such as a boiler. This will give a good idea of the distinction between thin and thick cylinders. In our columns of "Answers to Correspondents" in this issue will be found a question relating to thick cylinders. The dimensions given are: T=16,000, t=5, r=4; and by an application of the rule, we find the rupturing pressure per square inch to be $\frac{16,000 \times 5}{4+5} = 8,888.9$ lbs. By increasing the thickness of this cylinder, the strength is increased very slowly in comparison; and it is a very common practice, in constructing thick cylinders, to place bands on the outside, to compensate for the small resistance to rupture offered by this portion. # PNEUMATIC FOUNDATIONS. Colonel James B. Eads, well known to our readers as the engineer of the St. Louis bridge and other important structures, addresses a letter to Engineering, in which he takes issue with Colonel Roebling regarding some statements relative to the pneumatic foundations of the East River bridge, The disputed point relates to the position of the air lock within the shaft in the calsson, it being placed at the bottom and within the air chamber, making ingress and egress much more convenient than by any previous method, rendering it unnecessary to make the shaft airtight, and besides, having many other advantages which need not here be enumerated. The idea of this improvement is, by Colonel Roebling, ascribed to Lord Cochrane, whom he states proposed it in 1831, and also to Wm. Bush and G. Pfanmuller, who subsequently brought it forward at intervals of some ten years; but he adds: "It
remained for Captain Eads, in with water, tea, coffee, or something worse, and (which is his St. Louis calssons, to make the first practical application Colonel Eads, in contradicting the above, asserts that Colonel Roebling appropriates his plans without acknowledg- jured. latter habit is a reduced quantity of urine secreted by the ment, and then leads the public to suppose that they are the # THE PREPARATION OF GELATIN. In the ordinary manner of making light-colored gelatin, thin skins, sinews, cartilages, and bones are employed, which must be treated with muriatic acid and lime before being dissolved. These have furnished a good article, but at a high price. The expense of this process therefore induced Henze of Berlin to thoroughly investigate the subject of its manufacture in the hope of producing an equally good article at a lower price. The material employed was the brown, or almost black, glue of very poor quality, which is a by-product in a Berlin neatsfoot oil manufactory, and which sells for \$5 per hundredweight. This substance does not swell up in cold water like glue, but forms a gummy mass, dissolving as a thick, sirupy liquid, not very adhesive but resembling that of which printers' rollers are made. It is now used only in making cardboard and as a dressing for very dark-colored fabrics. In preparing this glue, the feet are first freed from hoofs and the more solid bones of the leg, which are used for turning into buttons and ornaments, and washed. They are then exposed for three hours to the action of superheated steam under a pressure of 2 atmospheres in a closed vessel; and after standing quietly half an hour, the liquid is drawn After skimming off the supernatant grease, the strong ammoniacal glue solution is strained and evaporated on steam bath, and then furnishes the before mentioned black ish glue. When perfectly dry, it is very brittle and easily rubbed off between the fingers. Attempts to bleach it have yielded unfavorable results. It shows that it is already decomposed and is no longer gluten, or contains only very little of it. A large quantity of sulphurous acid partially bleaches it, but to employ this on a large scale would involve many technical difficulties. The fragile apparatus for mak-ing sulphurous acid would soon be broken in the hands of the workmen. Sulphite of soda could be dissolved in a very dilute glue solution, and then muriatic acid added to decompose this salt, if the quantity of the sulphite of soda required were not too large; but 50 kilogrammes of glue would require at least 2,500 grammes sulphite of soda and 2,250 grammes muriatic acid. The salts formed, which are sulphate of soda and chloride of sodium, as also the free acid, would in no case increase the quantity of glue, but on the contrary would render it utterly useless for many purposes in the arts. The process of bleaching with mineral acids would also destroy the iron evaporating pans, so that this method must be given up entirely. All attempts at giving to the glue, when finished, the color desired having failed, no other course remained but to ascertain the cause of its becoming so dark-colored. The presence of sulphur and of considerable quantities of ammoniacal salts in the glue solution was too striking to escape notice very long. They could only have been caused by allowing the steam to act too long and too violently, whereby not only were the cartilages and gristle converted into glue, but the hair too had been dissolved, and thus caused the dark color. In order to reduce the decomposition of the glue and formation of ammonia to a minimum, the process may be varied in such a manner that, instead of drawing off the contents of the digester once at the end of three hours, they shall be drawn off hourly. On standing a little, the grease rises to the top and can be skimmed off, and then a quantity of fresh wood charcoal mixed with 25 per cent bone black is put into the liquid and left over night for the purpose of absorbing ammonia and other impurities. The following morning it is heated to the temperature at which gelatin melts, about 70° to 85° Fahr., strained and evaporated to the desired consistency. The amount of charcoal necessary is about 4 per cent of the quantity of glue in solution. The odor given off by evaporation after it has been purified with charcoal is quite pleasant and resembles that of bouilion soup, while that given off by the former method is one of the most disagreeable smells that ever polluted the atmosphere. Glue prepared in this way answers all the requirements of a first class article. Even in thick layers the color is a pale wine yellow, and it possesses a high degree of elasticity. has neither smell nor taste; and being always prepared from fresh material, it can be employed for all the purposes of so called gelatin. # THE SPECTROSCOPE SIMPLIFIED. Professor C. A. Young of Dartmouth College has recently made some interesting experiments in substituting fine ruled metallic plate in place of the pr'sms in a solar spec designed for the observation of the solar promi nences through the C line. The grating was ruled on sp trum metal by Mr. Rutherfurd of this city, the lines being of an inch apart and the ruled surface covering something over a square inch. Professor Young says: "Combining this with the collimator and telescope of a common chemical spectroscope, we get an instrument furnishing a spectrum of the first order, in which the D lines are about twice as widely separated as by the flint glass prism of 60° belonging to the original instrument. In the neighborhood of C, the dispersion is nearly the same as would be given by four prisms." The outline of the chromosphere and the forms of the prominences were as well seen, both in spectra of the first and third order, as with the ordinary instrument. The spectra are somewhat fainter but their appearance is not in- President Morton, of the Stevens Institute, informs us that he has also tested a similar ruled plate with like satisfactory results. He suggests that, the ruled plates may be duplicated by electrotyping, and thus readily furnished by opticlass at a price far below the expense of a train of prisms. if so, the production of spectroscopes at a very low price may be expected, and all who desire may possess them THE CHICAGO INTER-STATE INDUSTRIAL EXPOSITION New York is to have the yearly American Institute Fair and, sometime in the future, a perpetual Industrial Exposition; Philadelphia is absorbed in the prospect of the gran dear of the coming Centennial; Boston, probably, would announce a gigantic show, had not her triple infliction, in the shape of the Gilmore Jubilee and the two big fires, exhausted her energies; Cincinnati is to repeat the great Fair of last year; Louisville, doubtless, also; and even little Newark, not to be behind, is busy endeavoring to eclipse the admirable exhibition of her manufactures inaugurated in 1872. We have been waiting to hear from Chicago, and our expectation s at last gratified. Rebuilt from her ashes, the "Garden City of the West" proposes to "celebrate" the second anniversary of her scorching by a grand Inter-State Industrial Exposition, which the Land Owner says is to be the "crowning glory" of that momentous occasion. The building, which will be of a very ornate design, will occupy a portion of the lake front at the foot of Adams and Jackson streets, and will be 800 feet long by 200 feet wide. The main walls will be 24 feet high and composed of brick and glass, and the center will be surmounted by a dome 160 feet high by 50 feet in diameter. There is to be a grand art sallery, between which and the center of the building a large fountain will be placed. With the exception of the brick used in the walls, the entire superstructure will be built of glass and iron. It is the intention to have the edifice completed by September 1, so that a large force of workmen is employed and the work is being pushed forward as rapidly In regard to the Exposition itself, the programme will soon be issued, and it may be sufficient to state at present that the plan embraces a representation of the products of every branch of art, including liberal and fine arts; the processes and products of every species of manufacture, together with collections, models, drawings, etc., illustrative of the sciences. No more comprehensive scheme could be devised, except that it does not include live stock, nor such operations and processes relating to agriculture as require to be conducted and shown in the open air. It is intended to be a reflex, not only of practical art and manufactures as they are found in this country, but, to a large extent, of those of Chicago, as shown in her trade and commerce. Mr. Potter Palmer is president of the company managing the enterprise, and a large number of the leading citizens of Chicago are included among the officers and stock holders. # FREIGHT BUSINESS OF NEW YORK CITY ACROSS THE NORTH RIVER. The amount of produce and general merchandise constant ly being moved to and from New York city is so great that any statement of the business, by simply giving totals, can hardly be taken in by those unaccustomed to the vastness of the commercial transactions of the present day. The money represented, in the moving merchandise which constitutes the basis of the commerce of New York with foreign countries alone, is briefly tol l in the statement that the declared value of the imports and exports at the port of New York is apward of eight hundred millions of dollars annually which is annually handled in supplying the wants of home consumers as furnished by home producers is left entirely out of the question; and this, it is safe to say, is in bulk, as it is probably in value, far greater than the traffic directly connected with the export trade. Aside from the highly important arteries of communication which connect New York by rail with the north directly and thence west over the
Hudson river at Albany, and those which perform the same work as between the commercial metropolis and the New England States, as well as the great extent of water transportation up the North river and thence through the Erie and other cana's, the shipping in the Sound and to the south, along the Jersey shore or through the canals in that State, Delaware, Maryland, Pennsylvania, and southern New York-apart, we say, from all these facilities, all of which make it most convenient to land goods on New York piers and at the doors of its warehouses: there are the more important lines of railways, stretching west and south in every rection over the country and all having their proper termini on the west shore of the North river, whence their goods must be re-handled for shipment over the river, or the aly involves delay, but the expense for transportation over so small a portion of the route is great, vastly beyor,d comparison with that on any other portion of the distance The principal railroad lines which are situated to deliver their freight naturally on the Jersey shore are the Erie, the Pennsylvania railroad-which runs the Camden and Amboy and the New Jersey railroad—the New Jersey Gentral, and the Morris and E sex railroads. The totral amount of Hull. freight delivered daily, as well as that taken westward, varies greatly, as many as fifteen hundred crars coming in on come days, with as many going out; while at other times there will not be more than one third of this business. As or river, the more bulky and less costly articles will take the cheaper way, thereby reducing the amount of freight deliverable or taken by these channels when the canals and rivers are open to navigation; and so nearly the entire coal production of the country is brought forward to tide water or taken to its principal destinations inland by water. For the vast amount of freight coming and going from New York by rail, however, the methods of its handling and shipment over the river bave changed very little for some years past, except in the increased accommodations which the rapid growth of the business has called for. The Erie railroad company does not now, as formerly, run any cars to New York city, the whole amount of its freight being reshipped, on canal boats, barges, and lighters, to the delivering points in New York. The number of cattle daily received by this road is very great, and it has extensive cattle eards at Weehawken, about four miles above its main depot at Jersey city, with a track running there, whence the cattle may either be taken by the cattle barges or be driven by droves across by the ferry landing at 42d street, New York. As might be expected the cost of transportation over the river forms a considerable item in the running expenses of the road, not including the extra handling, which must increase the amount by at least fifty per cent, being reported at \$184,514 for the year 1869; though from this sum must be deducted the profits of the Pavonia ferry, the gross earnings of which for the same period were \$34,523. On the barges now used by the Eric company 8,000 barrels, or 80 car loads, of flour can be transported at once. On some days 200 car loads of flour alone have been delivered by this road at Jersey City. For other kinds of freight the facilities would be comparative both as to bulk and weight. For a car load of cut meats, such as hams, shoulders, bacon. etc., 36 packages is the rule, or fifty barrels of whisky, or about 1,000 sides of leather, etc. On the Pennsylvania railroad, which runs the Camden and Amboy and the New Jersey railroads, nearly all the freight, and all of that brought by fast express lines running over the road, is delivered in New York without breaking bulk. The cars are run on what are called car floats, carry ing eight to ten cars each-four or five on a side-and these are towed over to the depot on the New York side, and taken back in the same way. These car floats are simply large, square built, flat boats, and not very expensive; but as the business of this line and its connections is very heavy, and it also includes the Delaware and Raritan canal, quite an extensive fleet is needed for its business, which includes four freight steamers, fourteen towing steamers, six freight barges, ten car floats, twenty schooners, twenty-one coal barges, and seventy seven canal boats. The New Jersey Central and the Morris and Essex railoads, also large carriers of freight to and from the New York market, do not run any cars over the river, although there are several fast freight lines running over the former road under special contracts, which have their cars floated over the river by the same means as the Pennsylvania road, so that they do not break bulk until reaching New York city. The bulk of the carrying, however, on these roads, between New York and the Jersey shore, is by means of canal boats, lighters, barges, and freight steamers It might be supposed that no small proportion of the freight delivered and taken by these roads would be accommodated or supplied from the large number of ocean steamers which now have their landings on the Jersey shore, thus saving the expense of handling and shipping over the river; but this is but in this estimate, of course, the vast amount of freight true only to a very small extent. A very considerable proportion of their outward bound freight, especially in the ummer season, is furnished direct by canal or steamboat lines from the interior, and substantially all that they bring here is first taken to stores in New York city, or to the bond d warehouses, whence it is subsequently withdrawn to the stores. That which is imported in bond for the interior might thus go forward, but the amount is too small to render neessary any special accommodations for it. The total cost of passenger and freight ferriage for the use of railroads having their termini on the west bank of the Hudson can only be estimated, as these ferries also serve for the accommodation of a local business, though established and run mainly for their several railroads. There are eight passenger ferries, with boats running on each at intervals varying from ten to twenty minutes. Estimating the num per of boats necessary to carry on this business, or counting the number of passengers at a fixed price each, we think we are quita within the mark in considering the cost of pass ger and freight ferriage over the North River at fully two and a half million dollars annually # HE AMERICAN INSTITUTE FALL We call the attention of our readers to the advertisement in another column, announcing the opening of the fortysecond Annual Fair of the American Institute, at the building of the association, on Third avenue, between 63d and 64th streets, in this city, on the 10th of September next. It will be noticed that a change has been made in the management of the exhibition, and that the usual communications are to be addressed to the general superintendent, Mr. Charles W. We take the present opportunity to urge upon inventors and manufacturers, intending to contribute, to lose no time in that the freight which they carry must include almost every this season been given, and if exhibitors do not take advan- acid thus obtained is completely free from arsenic. kind of merchandise known; it is, also, equally apparent tage of it they must ascribe the unfinished condition, lessened that, where there is competing water transportation, by canal advantages, and consequent temporary lack of public inter- A new extension ladder for enabling firemen and others to enter and escape from burning buildings was recently tested in the City Hall Park in this city. A ladder is set on a four wheel truck and is composed of sections ranging from eight to twelve feet in length, and stands independently of any building. The sections are mortised together and fastened with bolts and pins in a horizontal position. When secured they are raised perpendicularly by cog wheels and ropes, and the truck is made steady by suspended weights that may be increased at will. Two of these aerial ladders were experimented upon, the longest one of which reached 125 feet, was about three feet wide at the base and tapered to eighteen inches at the top. The rungs were a foot apart, and side fastenings were arranged to form a rail when the sections were united. It took seven and a half minutes to place the apparatus in working position. By means of a book and fall on one of the sections, a fireman was hoisted in a canvas bag to the roof of the City Hall, and afterwards a lead of hose was carried up, strapped to the joints, and a stream thrown from the summit of the ladder. The tests were quite successful, though rather abruptly terminated by one of the firemen falling and sustaining severe injuries. The invention is the property of Mrs. Scott Uda, an American lady, the wife of an Italian gentleman, and was first introduced in Milan, Italy. # SCIENTIFIC AND PRACTICAL INFORMATION. NEW STEERING DEVICE FOR WAR VESSELS. Mr. N. Scott Russell proposes to place the tiller or yoke under the water and connect it through tubes to the steering apparatus. The advantages to be gained by this arrangement are complete protection of the tiller from shot, the tiller can be made of any length, and the afterpart of the vessel need not be armored, thus lightening the ends and leaving a great weight to be disposed in thickening the armor over the vital parts of the ship, or increasing the amount of coal to be carried. NICKEL. Within the past three years, more especially since the discovery of practical methods for electro-plating with nickel, the demand for this metal has greatly increased, and its price has advanced. It has risen from \$1 to \$3.75 per lb., and its expense has become so great that a substitute for it in the arts is now sought. A good substitute, it is stated, may be found in the metal manganese. Dr. Percy, in a letter to the London Times, states that 20
years ago he made an alloy in which manganese was used in place of nickel, and the resemblance of the alloy to the ordinary German silver was perfect. Copper 75 per cent, manganese 25 per cent, makes an alloy resembling German silver, and better in its qualities. By the improved process of Hugo Tamm, heretofore described in the SCIENTIFIC AMERICAN, manganese may be much more cheaply produced than nickel. EXPERIMENTS ON THE RESPIRATION OF FISHES. M. Quirquand arrives at the following conclusions: 1st. The quantity of oxygen absorbed is proportional to the unit of time. 2d. The relative power of respiratory labor in fishes diminishes with the weight. 3. The species has but little influence on the activity of respiration. 4. Carps of two pounds weight breathe from seven to nine times less than man, for the same period and unit of weight of living substance. 5. Fishes have a cutaneous respiration, as recognized by Humboldt and Provengal, but it is feeble. # THERMO-DIFFUSION. M. Jedderson says, in Poggendorff's Annalen, that if a porous body be made in the form of a diaphragm and each face be exposed to a different temperature, a current of gas is immediately formed from the colder to the hotter side. The author considers this phenomenon as entirely differing from ordinary diffusion, and proposes to distinguish it by the name heading this paragraph. # NEW WOOD CARVING PROCESS. M. Lanteigne, says Annales Industrielles, has invented a machine for producing wood carvings at the rate of a yard a second, and at a cost of about one per cent of those executed by hand labor. The operation consists simply in passing the wood between cylinders forming matrices. The material, it is stated, is not deformed, and greater density is given to it by the pressure, while the sculpture is as delicate as that made by the chisel. The process can be used for producing cornices, furniture decoration, and similar ornamental work. TRANSMISSION OF PHTHISIS PULMONALIS THROUGH DIGESTION animals, he has determined very clearly that the idea that phthisis pulmonalis can be transmitted through using the flesh of animals affected with tubercular diseases is erroncous. Such maladies are never inoculable through the digestive organs, and hence the employment of the meat of phthisic animals does not offer the danger generally sup- PURIFICATION OF HYDROCHLORIC ACID. M. Engel introduces, in 1-06 quarts of hydrochloric acid, 60 to 75 grains of hypophosphite of potash dissolved in a little water. After an hour or two the liquid becomes yellow and preparing their exhibits, securing space and completing the necessary preliminary arrangements. There is no excuse abundant according to the degree of impurity of the acid. abundant according to the degree of impurity of the acid, these roads have connections all through the South even to for the state of chaos which has marked the opening days of At the end of about forty-eight hours, the deposit ceases and Texas and through the west to San Francisco, it is obvious the Fairs of the past four or five years. Timely notice has the clear liquid above is decanted off and distilled. The SILEWORMS We continue, from our paper of August 17, 1872, the series of illustrations of silkworms which feed upon the oak, and which are now being acclimated in the United States. Our illustrations and description are from the fourth Annual Report of Charles V. Riley, State Entomologist of Mis- THE YAMA-MAI SILKWORM—Attacus [Antherwa] Yama-mai Guér-Mén. (Lepidoptera, Bombycida.) This worm is a native of the northern parts of Japan. It feeds on a species of oak known botanically as Quercus servats. Its silk is produced in large quantities in its native country, and already forms as article of export. It has been found more difficult to acclimatize than the allanthus worm, noticed upon tearing or rubbing the cocoon, nd but indifferent success has attended its culture. Yet It is, withal, so valuable an insect that further trial is fully justified. In Amer-ica it has been experiented with only since Mr. W. V. Andrews, of New York, who has taken great interest in the introduction of foreign silk-worms, gives me the encouraging information that, in 1871, nearly 800 cocoons were obtained from about 1,600 eggs, in the vicinity of New York. Yama-mai undoubtedly belongs to the same natural genus as Polyphemus, which it closely resembles in habit and appearance Its culture may be carried on in the same manner as that of cynthia, and it will in its management. Fig. 3 .- THE YAMA-MAT SILKWORM The egg is rather larger (Fig. 3 shows it of natural size and magnified) than that of Polyphemus, less flattened, and of a pale straw color with a pinkish tint. It appears brown from being more or less thickly costed with a brown tena cious gum, which may be washed off by any alkaline fluid The eggs should be kept over winter in a temperature never higher than 40° Fah. When hatching they should be mois-tened or kept in a moist atmosphere. As in the case of our American tent caterpillar, the young larva is fully developed within a month after the deposition of the egg, and passes the winter in a curled-up, quiescent state within the egg The worm thrives best in an atmosphere that is cool, moist and shady, and the heat, if it can be controlled, should not exceed 80° Fah. It is a lazy slothful creature, and often rests for hours in the position given in Fig. 3. As we learn from Mr. F. O. Adams, who has made an interesting report on the culture of this species, the color of the more mature worms so thoroughly corresponds with that of the leaf on which they naturally feed that they can with difficulty be detected They are of a beautiful clear green, with generally two silvery spots each side on the fifth and sixth joints, and a pale yellow line running along the sides. This line, with the position which the worm sometimes assumes, strengthens the resemblance to the leaf, and I reproduce a rough outline (Fig. 4) from Mr. Adams' Report, which will well convey this resemblance to the reader's mind-the worm being outlined The life of the worm lasts from 50 to 80 days, and it feeds on all kinds of oak, but prefers those of the white oak group. Dr. Alexander Wallace, of Colchester, England, to whom I am indebted for specimens of the moth, and who has extensively experimented with it, found that the worm would feed by weighing, and keeping the male cocoons in a cooler place also on beech, apple, quince, white thorn, Nespolitan med- than those of the female. lar (photinia glubra), and chesnut. requires a full week for its completion. It is formed within a single leaf or within several drawn together and attached to a twig. It is oval and usually of a bright golden yellow color on the outside, though nearly white inside. Those raised out of doors are more green, while those raised indoors are more yellow, and white specimens have already been produced. The silk is strong and valuable; it bleaches well, and may then be dyed; fewer threads are required to make a strand than in that of mori, and it unwinds with perfect facility by the ordinary process. It shows its affinity to that of our *Polyphemus* by the gum which surrounds it containing a chalky or calcareous substance which may be The moth (Fig. 2, male) is magnificent in point of size and Fig. 2.—THE YAMA-MAY MOTH, MALE, suffice here to point out such of its peculiarities as will guide | margin are always of an ash gray. The eye spots are surrounded with more or less pink and yellow, white and black, the black always being on the outside. The broad lines across the wings are either wavy and slate colored, with an inner wavy coincident shade, or more straight with a whitish outer shade, relieved by a darker and more reddish posterior shade. The posterior margins are either paler than the general surface, or ornamented with a dark wavy line. The median shade across the front wings is either very distinct and scolloped, or obsolete; and there is either one or two such shades on the hind wings. The species varies, in fact, very much in the detail of ornamentation, and in general color, being either yellow, brown, grayish, or olivaceous, and some specimens much resembling certain forms of our Polyphe > According to the testimony of those who have had most experience with this species in Europe, coition invariably takes place at night, and lasts but a comparatively brief time. As the moths issue very irregularly and the males are apt to appear many days before the females, and as it has been fur ther ascertained that unless they emerge within a day or so Fig. 4.—RESEMBLANCE OF THE WORM, a, TO THE LEAF. of each other, the sexes show little affinity, it is best to retard the male cocoons. This can be done by first separating them From the foregoing it is evident that, while yama-mai is, quickly the more compact the upper layer of soil. The cocoon (Fig. 1) is large, heavy, and handsome, and | the most valuable silk producer next to mori, it is neverthe less very difficult to rear. It cannot well endure a heat be-yond 80° Fah., and will doubtless thrive best in the more northern States, for it will bear a moderate amount of cold. even below freezing point, for brief periods, with impunity It is invariably single brooded, and runs a longer course of life than any of the other species treated of. The hatching of the eggs must be retarded till the first oak leaves (the buds of the post oak are among the earliest to swell, but some species of the black oak group, especially the laurelleaved oak, leaf out first) put forth; and moisture, which is prejudicial to the mulberry silkworm is grateful to this experience. prejudicial to the mulberry silkworm, is grateful to this one at all times. I have already said that the embryo larva is fully formed soon after the egg is deposited. Now all our eggs, so far, have been obtained indirectly from Japan via reverse, and the vitality of the young worm thus impaired. Mr. Andrews believes that
to this fact must be attributed much of our failure in this country, and I fully concur with him. In this country which, compared with Europe, is so rich in oaks and in the large silk-producing insects so closely allied to yama-mal, and which is so varied in climate, we certainly ought to meet with better success than our European friends; and until we procure eggs more directly, or obtain them from insects reared in this country, so as to preserve them in uniform and fa- vorable conditions, it cannot be said that we have taken the proper steps towards acclimating it. Fig. 1.-COCOON OF THE TAMA-MAT SILKWORM # A Common Sense Decision. Chancery proceedings were lately begun in London by the proprietors of a weekly newspaper entitled The Iron Trade Circular (Ryland's) to stop the publication of another jour-nal entitled Griffiths' Iron Trade Circular. The Vice Chanceller delivered the following judgment: This is a motion for an injunction against the defendant to restrain him from continuing to publish a paper under the name of The Iron Trade Circular, and the motion is made on the ground that the plaintiffs are the proprietors, and have been so for eight years past or thereabout, of a publication, published every Saturday, which is entitled The Iron Trade Circular (Byland's). Now, the doctrines of the Court upon this matter are very plain. When a name has been used and appropriated, whether it be the name of a newspaper or a book, or a mark on an article produced for the purposes of trade, the person who first uses or appropriates the name or mark is entitled to prevent any other person using the same mark or Therefore (by way of illustration), nobody could be permitted by the laws of this country to start a newspaper in Lendon to be called the Times, because that is already aptors of that well known paper. So with regard to the Saturday Review, which is also a well known name; nobody, therefore, could be permitted to bring out a new publication to be published weekly called the Saturday Review, because that name is already the property of other persons. Judgment for the plaintiff. EFFECT OF STREET GAS ON TREES .- Experiments have been lately made, in the Botanical Garden at Berlin, as to the effects of ordinary gas on vegetation. Gas was conducted through pipes to the roots of various trees continuously for several months. The principal conclusion arrived at was that 25 cubic feet of gas, daily diffused through 576 cubic feet of earth, is sufficient to kill trees of any species, and the more # IMPLOVED PLOW The principal advantage claimed for the invention repre sented in the accompanying engravings consists in the arrangement of the plow stock, which is so constructed as to ase on cotton and other farms where varying patterns of plowshares are necessary for different purposes, the economical value of this device is obvious. The farmer in purchasing this plow need only procure in addition thereto a suitable selection of blades, with one of which he is at once furby many leading firms, there remains little doubt but that keel; the iron stern at present in use in ordinary iron vestication of the selection selectio nished in the efficient form of turning plow which constitutes a portion of the complete In Fig. 1 the blade and standard are shown connected, and in Fig. 2 the same are represented separate in order to represent the mode of attachment. The beam and handles are of the usual description. The standard, A, consists of a single bar of iron made into a loop with two diverging arms. One of the latter is bent forward edgewise, and both together act as braces. In securing them, the forward arm passes through and the rear arm is bolted to the side of the beam. Two or more holes in either branch allow of the adjustment of the angle of beam and standard to suit plow blades of different curves. The cast turning plow is made with a shoulder, B, on the under surface of the mold board, and its under face rests on the front side of the loop of the standard, a projection, C, fitting in said loop. The ob-ject of the shoulder is to give the backward inclination to the mold board, and the pur-D, in uniting the mold board and standard the mold board enables cast plows of any pattern or size to be adjusted to the standard, the latter of course varying in size, according to the power to be applied. A saddle with its under surface, modified as the mold board just described, is to be used when a wrought mold board turning plow is to be employed. In this case the saddle, on which is a land side, is introduced between the mold board and standard, and the same bolt passes through and secures all parts. Among the additional advantages claimed for this device are that it is universal in its uses, is an efficient turning plow, and an excellent standard for a subsoiler. It can also be made at as low a price as any other good plow. The inventor is a farmer and has thoroughly tested the plow on his farm for a period of two years with uniformly good results. Three patents cover the improvement, the latest of which is dated Oct. 29, 1872. For further particulars regarding sale of rights, interest, etc., address the inventor, Dr. F. M. McMeekin, Orange Spring, Marion county, Fla., or Bent, Goodnow & Co., 84 Washington street, Boston, Mass. # IRON SHIP CONSTRUCTION. The progress of iron ship construction in this country has, of late, advanced so rapidly as to engender a reasonable hope that the time is not far distant when American built vessels and razed in. There are two of the latter, each being large rival in the employment of the commerce of the world, the far famed productions of the shipyards of the Clyde. With every resource of material, machinery, and skilled labor be readily connected with any desired form of blade. For abundantly at our command, there seems no obstacle to the speedy furtherance of an industry than which none bids fairer largely to augment our national prosperity; and if the owners of our merchant marine will, by their substantial en- THE UNIVERSAL STANDARD PLOW. immovably when needed for service. This modification of our now dilapidated commerce will soon regain if not exceed | the proud proportions which it had attained before the outbreak of the war. > In the following description, though necessarily brief and general in detail, it is proposed to give an outline of the method of proceeding with the work of building iron ships. We are indebted for the facts and illustrations to a new volume, recently published by Messrs. John Wiley & Son, of the whole theory and practice of the subject to which it is devoted, and emanates from the pen of Assistant Naval Con-structor Theo. D. Wilson, U.S.N., an officer of well known experience and ability. # PREPARATORY WORK. As soon as the drawings have been completed, a model of the ship, on a scale of half an inch to a foot, is prepared, on which the general arrangement of the edges and butts of the plating, the directions of longitudinal work, deck lines, etc., are marked. Simultaneously, the laying down of the ship is proceeded with, that is, the different parts of the vessel are delineated in their full size upon the mold loft floor. This > enough to take the midship section, the fore body being transferred to one and the after body to the other. In order to show these lines more clearly the upper surface of the simultaneously, as, indeed, now d "shrive" or shriving braids, as they are termed, with the construction of the ship. is covered with a composition of lamp black size and water. Beside the lines to the outside of the frame, the position of the plate edges, diagonals, level lives, hights of floors, beam ends, etc., are also marked upon the boards, which are then removed to a place near the furnace in which the angle irons are heated. BENDING THE ANGLE IRONS for the frame is the first operation. The leveling blocks or bending slabs on which this is done are made of cast iron, the upper sur-face being straight and out of winding, and perforated with holes placed at intervals of about six inches. The line to which the frame is to be bent is transferred from the blackboard to the slab by means of a soft iron bar, known as a " set " iron. which is bent to the line on the board, has the beveling spots, etc., marked upon it, and is then removed to the slab on which the curve is drawn and the spots are marked. After the bending and beveling are completed, the angle iron is allowed to cool, and is then taken to the blackboard and tried to its curve, any unfairness or alteration of from the Delaware shall be as eagerly sought for, and, indeed, | form, which may exist, being set right. The holes are next punched and a final trial of the curve finishes the work. KEEL, STEM, STERN POST, AND BEAMS While the frames are being prepared, the keel is proceeded with and temporarily put together on blocks alongside the dock or slip where the ship is to be built. After it is set up, the frame stations are painted upon it, when it is taken apart and again put up permanently and riveted in proper position. sels is simply a curved solid bar of uniform section, or nearly so, generally forming the contour of the bow. In war vessels, the first thing to be accomplished is to give to such a stem the support of all the bow, bottom plating, and armor plating, to deliver a horizontal blow, and for this purpose all such plating is let into the substance of the stem, abutting squarely against the fore side of a The stems of all the English ironclad frigates are formed of the best scrap iron under the steam hammer. They were bent on beveling slabs used for forming ship frames as above described, a coke fire being made around a length of about eight feet at a time. When the heat was sufficient the fire was removed, and the bending effected by means of wedge sets, tackles and crabs, and other like appliances. The operation was repeated until the whole length was brought to the required shape. The
sternposts of iron ships admit of the same variety as keels and stems. Solid bar posts are now used, being scarfed or welded to the keel in th same manner as the stem is secured. The form of beam now commonly employed, especially for upper deck beams, is known as the Butterley patent welded eam. Up to 12 inches in depth, it is rolled in one piece; above this dimension, the bulb half is rolled separately from the upper or T half, and the two are welded together along the neutral axis of the beams. While the frames and keel of the ship are in progress, beam molds, with the spring and length marked upon them, are given to the workmen to guide this city, entitled "An Outline of Ship Building." The book, them in making the beams. The processes of bending and we may here remark, is a thorough and careful exposition of straightening the latter are performed by means of screw presses worked by hand or hydraulic power, the metal being cold. In forming the beam knees the ends are the only parts put into the fire, and the plan adopted in nearly all instances is to split the beam arm for a short distance, turn the lower part down, and weld a piece of plate iron in. # FRAMING. When the keel has been fixed in position on the permanent blocks, the frame amidships is first put up, and the work is continued fore and aft simultaneously. Stages are then made around the ship at different hights for the purpose of proceeding with the plating, the latter operation being com-menced as soon as the frames are regulated and secured in In the meantime the floor plates, shown in the engraving Fig. 1, on the inside of the vessel nearest the keel are prepared, and holes made in their upper edges for the reversed bars. The riveting up of the latter and the floor proceeds simultaneously, as, indeed, now does all the work connected -SECTION OF IRON VESSEL, BUILT ON THE TRANSVERSE SYSTEM. Fig. 2.—SECTION OF TRON VESSEL, BUILT ON BRACKET PLATE SYSTEM ### PLATINO. A strake is a breadth of plank, or, in iron vessels, plating wrought from one end of the ship to the other. According to the plan now in general use, each alternate strake is worked directly on the frames and the intermediate strakes form an outer layer, each of which overlaps the edges of the two adjoining strakes. This will be rendered clear by a giance at the section of the exterior plating, as shown in Fig. 1. The lowest strake is generally an inside strake and is first put on, the work being continued upward. After holes have been punched each plate is curved by passing it through rolls, and is then put in place and temporarily secured. Pieces filling up the space between the frames and outside strakes, called "liners," are fitted after the plates are prepared and fixed. While the plating is thus proceeded with, the work on the interior of the ship is also advancing; the riveting of the reversed angle irons and floor plates being completed, the beams being got in and fastened, the deck and hold stringers being fitted, fastened, etc. The edges and butts of bottom plating are generally double chain riveted, but in some cases treble chain riveting is employed for butt fastenings. # FINAL OPERATIONS. The deck planking is of wood, almost invariably, the planks being usually secured by a screw bolt driven down from above with a nut underneath the iron deck. Watertight bulk heads, in iron vessels, are always placed transversely, and in some cases longitudinal divisions are employed in addition. In many steam ships the longitudinal bulk heads enclosing the coal bunkers are made watertight. After working about three fourths of the outside plating, men are set to work closing up the joints, reaming out unfair holes, etc., preparatory to riveting. The latter is done by piece work, a set of riveters being two riveters, a holder up, and two boys to carry the rivets. Care is taken that the holes are well filled and the points of the rivets flush with the surface of the plates. When this work has advanced to some extent, caulking of the butts and edges commerces, the closeness of the joints being first tested by trying to insert a thin steel blade at various points. Lastly the painter follows, and the vessel receives coatings of red lead which prevent oxidation of the finished portions. # BRACKET PLATE SYSTEM OF FRAMING. In Fig. 2 is represented a section of H. B. M. frigate Bellerophon, showing a system of framing universally used in the construction of heavy armored vessels in Europe. It has been recently introduced in this country and has been first employed in the torpedo boat now in process of construction from the designs of Admiral Porter at the Brooklyn navy yard. The difference in the mode of construction is apparent by a comparison of the two illustrations. # Prevention of Artisans' Diseases. In a recent lecture by Dr. Mapother, on the subject of the prevention of artisans' diseases, he said that the special diseases which ili regulated trades induce may be placed under three classes: 1. Those due to the entrance of dust into the lungs: 2. Those due to slow poisoning: 3. Those which constrained positions or overwork in close rooms engender. Stone cutters suffer from lung affections by inhaling minute particles of stone, which irritate the lungs and excite inflammation. The working of flax is also very detrimental, giving rise constantly to asthmatic complaints. At paper works the teasing of the shoddy, and at marine stores the picking of rags, create a most stifling and hurtful dust. The remedy for dusty trades was, first, to use a respirator which would filter the air. He had devised one some years since which was found to be very effectual, and cost only a few pence. It consisted of a wire gauze covering the mouth and nose, lined by a layer of cotton wool a quarter of an inch thick. Other remedies were ventilation by means of McKinnel's tube; the action of steam fans; and the peremptory exclusion from all labor requiring vigorous muscular and breathing efforts, of persons under eighteen, whose organs up to that age are not strong enough to resist ill usage. Having referred to the diseases which occur among those who work with lead, copper, mercury, phosphorus, and arsenic, and the chemical and mechanical appliances for their prevention, he alluded next to the case of seamstresses. Weakness of sight, from over-use of the eyes, with badly arranged light, and indigestion, from bad and hasty meals and long sitting in a close room, are diseases which have been commonly observed among needle workers, who number in Dublin between reven and eight thousand. # The Telegraph in Austria. G. B. Prescott Esq., the electrician of the Western Union Telegraph Company, says, in the Journal of the Telegraph, that in Austria a telegraph system constructed differently from any on the continent is found. In France, Belgium, and North Germany, cross arms are not used, the insulators being fastened directly to the poles, but in Austria the cross arms again appear. They consist of round sticks of wood, of about three inches in diameter, apparently the natural timber with the bark taken off, and unpainted. When many wires are carried, two poles are used, which are joined together at the top and separated at the bottom about five feet, thus forming what the English call an A pole. The cross arms are alternately fastened upon each side of the pole, as they are in England, a preferable plan to ours, where they are all placed on the same side. In Vienna the wires are carried on iron poles, no underground wires being employed either here or in any part of Austria. The pole is made of cast iron, and is very ornamental. It consists of an iron column about twenty feet in hight and one foct diameter. The lower end is screwed, to a stone base. At the top of the column a horizontal arm extends about two feet on either side, and from the ends there extend two vertical shafts fifteen feet in hight, thus constituting an iron column with two branches, resembling a candlestick holding two candles. The two upper shafts support eight iron cross arms, and each cross arm carries eleven wires, so that each pole carries eighty eight wires. The poles are about one hundred and thirty feet apart. The Government has only one office in Vienra for transmission of despatches, but it has eleven offices at which messages are taken in, and from which they are sent to the transmitting office by messengers. There is a private company, however, the "Wiener Privat Telegraphen," which has about sixty stations in Vienna and forty in the vicinity. The Austrian terrifory is divided into two telegraphic zones. The charge to the first is 40 kreutzers, and to the second, 60. The male operators receive from 600 to 1,000 guldens or florins (\$300 to \$5...9) per annum. The female operators from 250 to 350 florins (from (\$125 to \$175) per annum. In addition they both receive half a kreutzer (quarter of a cent) per message as a commission for their work when employed on the Morse, and three quarters of a kreutzer on the Hughes. The number of employees to do a given amount of work is always strikingly greater in Europe than in America. There is none of that hurry and bustle which we see at home. The Director General comes to his office at 12 or 1, and gets through at 3. In the offices, everywhere and at all times, everybody smokes. In Vienna they are building a splendid telegraph office. The walls and roof are already up, and they are now at work upon the interior. The building is five stories, and is built of stone, re-sembling the Nova-Scotia freestone-but of a better quality, and highly ornamented. In front there is a sculptured figure of Time and a group representing the telegraph. The building will cost 800,000 florins, or \$400,000. It is square, and has an inner court also square, and admits light from four sides, without and within. The operating room is on the top floor, and occupies three sides of the building. On the opposite side of the
street they are erecting a splendid exchange and, adjoining it, a new post office. These are to be connected with the telegraph by a pneumatic tube, and a pneumatic tube will also convey the messages to the operating room from the receiving office. # Preparation of Chlorates for use in Calico Printing, It has heretofore been customary, in preparing the various chlorates, to first decompose the chlorate of potash with tartaric acid. The cost of the latter, however, made them more expensive than the chlorate of potash from which they were made. Schlumberger now uses the sulphate of alumina for decomposing the potash salt, thus forming chlorate of alumina and alum, and from the former the other salts may be obtained, not in a state of purity, to be sure, but sufficiently so for printing. Ammonia, lime, baryta, soda, and even aniline, are able to decompose the chlorate of alumina, and combine with the chloric acid to form chlorates. Chlorate of ammonia is obtained by precipitating the alumina with ammonia or carbonate of ammonia, and filtering. The solution will contain chlorate of ammonia with a little sulphate of potash and sulphate of ammonia, so that we find that Schlumberger's chlorate of alumina must contain also some alum. Chlorate of lime is obtained by precipitating the alumina with milk of lime; and since sulphate of lime, which is formed at the same time, is almost insoluble, it settles and leaves the chlorate of lime purer than the ammonia salt. Chlorate of baryta is made in a similar manner, and is the purest of all, for caustic baryta precipitates all the sulphuric acid present in the alum. Chlorate of aniline contains also very little of the sulphate because of the insolubility of sulphate of aniline, and only the chlorate of aniline and a little sulphate of potash remain in the solution. This preparation of chlorate of aniline without tartaric acid, seems to be very important in an economical point of view, since aniline black is now prepared from chlorate of aniline. The chlorate of alumina is very acid and dissolves considerable hydrated alumina; hence its formula is uncertain. It also dissolves magnesia, and in this way a mixture of chlorate of alumina and chlorate of magnesia is obtained which is useful in printing with camwood. CAT'S TAIL PAPER.—Among the novelties at the late Lyons exhibition were certain products obtained by M. Dupont, of Nismes, from the reed mace or cat's tail, a plant which is very abundant in marshy districts, and which has been utilized for mats, chair bottoms, baskets, etc. M. Dupont prepares the fiber by first boiling the cut and dried leaves several hours in an alkaline solution, then pressing them between rollers and washing. A specimen of yellowish, very fiberous paper made from the plant was exhibited. The fiber is yellowish, but it can be easily bleached, and takes dye colors readily. Some specimens of ropes and cords from this fiber were also exhibited. TRAGACANTH MUCHAGE.—Take of powdered tragacanth,1 dram; glycerin, 6 drams; water, enough to make in all 10 ounces. Rub the tragacanth in a mortar with the glycerin and then add the water. This will produce a mucilage at once of excellent quality. How to Clean Bones.—Soda ash, 1 lb.; lime (burned) ½ lb.; hot water, 3 quarts. Mix and soak the bones for 24 hours in the liquid; wash them thoroughly and bleach them. # Correspondence. The Diurnal Variation of the Magnetic Naedle. To the Editor of the Scientific American: The diurnal variation of the magnetic needle has always been a perplexity to land surveyors. I cannot ascertain, from any authority I have ever consulted, what allowance per hour to make for it. I can only learn that the needle changes from east to west about fourteen minutes between 8 o'clock A. M. and 2 o'clock P. M. To supply this deficiency of the text books, I have experimented through three days with the following results: My experiments were made with a surveyor's transit, with a five inch needle, read with the aid of a magnifying glass. As the following table shows, there is a great and unreliable lack of uniformity in the hourly change, both in the different hours of the same day, and between the same hours of different days. By reference to the table, it will be seen that from 8 to 9 A. M. on May 16 the change was eastward, while, during the same hour on the 17th, it was westward. On the 16th, from 9 to 10 A. M. the change was westward, while during the same hour on the 17th the change was eastward. On 17th, between 3 and 4 P. M., the needle made a sudden change westward, after it had commenced to return east; and a like occurrence took place on the 16th, between 5 and 6 P. M. On the 15th, the needle began to return east between 1 and 2 o'clock P. M. On the 16th, it did not begin to return till between 2 and 3 P. M.: and on the 17th, it began returning to the east between 1 and 2 as on the 15th. There were no local causes to make the difference in the changes during the same hours. The weather was throughout the three days alternately sunshine and clouds, warm at noon and cool at morning and evening. | А. М. | May 15th.
West | May 16th. | May 17th. | |---------------------|---------------------------|-----------------------|----------------------------| | 8 to 9 o'clock | | 1/ in 60 minutes. | West
1' in Sig minutes. | | 9 to 10 " | | 1/ in 12 % " | 1'in 12% "
West | | 10 to 11 " | West | 1/ in 12% "
West | 1/ In 13 "
West | | 11 to 12 "
P. M. | 1' in 12% minutes
West | 1/ in 75
West | C'in 50 " | | 12 to 1 " | 1/in 18 "West | 1/ in 19 "
West | I'in 36 "
West | | 1 to 2 " | 1' in 6) "East | l'in 40 " | 1/in 54 "
East | | 2103 " | 1'in 12 "
East | Min 50 " | %' in 51 "
West(!) | | nto4 " | I'ln 3914 " | 1/in 50 " | 1' in 23 "
East | | 4105 " | 1' in 10% " | 1/ in 9% "
West(!) | I'in 10 "
East | | 5 to 6 " | 1/ in 17 " | 1/ in 15 ** | 1/ in 40 "
East | | 6 to 7 " | | | 1/ ln 11 " | Are there any reliably recorded observations to guide a surveyor in the hourly change of variation? Rockville, Ind. JNO. T. CAMPBELL. # The Effect of Electricity upon Metals, To the Editor of the Scientific American: The deterioration of metals is of interest as an economic question, as well as a fit subject for scientific research. As the health and longevity of human life have been promoted by intelligent effort, so also has it been deemed possible to resist the destructive influences which attack the metals that enter so largely into every department of industry. Of the various agencies sought to antagonize the oxidation of metals, especially iron and copper, none presents more interesting phases than electricity. Almost in the infancy of electrical discoveries, it was ascertained that galvanic action, in some unexplained manner, exerted a protective influence upon one metal at the expense of another when both were plunged in the same solution, effectually checking all oxidation of the protected metal, even under circumstances that would ordinarily suffice to rapidly destroy it. A saline solution attacks iron or copper; but if a piece of zinc be attached to either, it is preserved, while the zinc is consumed. It was upon this principle that Sir Humphrey Davy based his plan for the protection of iron and copperbottomed vessels from the action of sea water, a plan, however, which has not been found practicable for reasons which do not affect metals under other conditions. Napier considers the application of zinc to iron a barrier to corrosion 'Not only as a coating but from its more electro positive character, it protects it by a galvanic influence " Upon this subject, Faraday asserts that "zinced iron would no doubt resist the action of sea water so long as the surface was covered with zinc, or even when partially denuded of that metal; but zinc dissolves rapidly in sea water, and after it is gone the iron would follow." The same writer says: "As to voltaic protection, it has often struck me that the cast iron piles for lighthouses or beacons might be protected by zinc in the same manner that Davy proposed to protect copper by iron." Faraday's hint has been acted upon by the British Government, and perhaps by others, in the protection of the iron cables with which the buoys are moored in the Eng lish Channel and various British sea ports. M. Van Be observed that a copper vessel, filled with sea water for fortyseven days, connected voltaically, by means of a platinum wire, with a plate of iron plunged in the same liquid, was preserved from all oxidation. De La Rive says: "A metal, copper, for example, may be protected against the corresion exerted upon it by an acid or a saline solution, such as sea water, by associating it voltaically with a more oxidizable metal, such as zinc." M. Schönbein demonstrated, by a numerous series of experiments, that iron and copper oxidize in air, in water, and in a saline solution, as well when they are in contact with zinc as when they are not so, if there is no electric current; but that as soon as there is one established, the negative metal is no longer oxidized. Dr. Schorm found that iron plunged in nitric acid becomes negative to untreated iron, and acquires a singular property enabling it which, the editor of the SCIENTIFIC AMERICAN (March 16 1872) ascribes the result of the experiment to electrical action and anticipates that "investigation may give us some new light on the subject of electrolysis." Having thus based the statement of this protective prin-ciple upon the highest authorities, I will enter into the con-sideration of a phenomenon as valuable in the practical arts as it is instructive to the student and scientist: yet, unfortunately, as a distinguished writer has aptly expressed it, the subject "has occupied the attention of practical men for seems yet to be a great deficiency in our knowledge of the extent of this influence, and how and when it is effective." The object of this article is not to attempt an
explanation of the unknown or to develop a new theory, but rather to invite attention to a principle in Nature which may be made of practical utility in many ways when better understood. One new feature, not mentioned in any of the text books, has been developed by a single experiment which any of the readers of the SCIENTIFIC AMERICAN can try. It has been found that instead of making the metal to be protected one of the elements of the voltaic combination, it may be made simply the conductor of a current generated by an independent battery. Immerse a sheet of copper in a saline solution, and, instead of attaching zine to the copper, connect the latter by wires to the poles of an ordinary galvanic battery the result is that, so long as the electric current is main tained through the copper, the solution in which it is plunged is inert and will not attack it. This only corroborates, more forcibly than ever, the conclusions of the SCIENTIFIC AMER-ICAN and the other authorities quoted, that these phenomena are attributable purely to galvanic action; and it widens the J. L. WAITE. field for future investigation. St. Louis, Mo. # Estimating the Power Transmitted by Belts, To the Editor of the Scientific American: On page 257 of the current volume of the SCIENTIFIC AMERICAN, you give two rules for estimating the power trans mitted by belts. Not long since, some experiments were made, in a large woolen manufactory, to determine the amount of power consumed in working the machinery in several of the departments of the factory. Selected from a large amount of data obtained, the following, relevant to the subject under discussion, will, I trust, be found of interest to very many of your readers; and the importance of your hints in relation to the employment of a dynamometer ought to be placed, by it, beyond question: From a 46 inch pulley, an ordinary horizontal 8 inch belt drives a counter line about 40 feet long, by a 20 inch smooth iron pulley; and from pulleys on this line, the picking machinery and fans for drying wool were driven. The 8 inch belt having been thrown off, a similar 8 inch one was employed to drive from the 46 inch pulley in nearly a vertical direction to the 24 inch leather-covered pulley of the dynamometer, about 6 feet distant from center to center. From the driver on the dynamometer (also leather-covered) s 6 inch new double belt ran on a 20 inch iron pulley, about 12 feet distant, on the counter line before mentioned, rising at about an angle of 30°. The new belt was put on with clamps and was considered tight. It transmitted, ..ithout difficulty, 13.9 horse power at a speed of 1,130 feet per minute. Adding 2:19 horse power, the belt slipped so that speed could not be obtained. Three inches were then taken out, the belt becoming quite taut, not more so, however, than is quite usual on woodworking machinery. It would then transmit 17:27 horse power without any appearance of slip whatever. By the formula given, the 8 inch belt would be rated at 3.875 horse power. By actual test it was found equal to more than four times the estimate. An 8 inch belt could not be made to drive from the dynamometer on to the 20 inch smooth iron pulley on the counter line. By the same formula, a 6 inch belt would be rated at 2.53 horse power and a double belt at 3.8 horse power (adding one half for a double belt). The common millwright's rule in this instance is much nearer the truth, and that estimate, 8:22 horse pow er, is less than one half the power actually transmitted. The best possible conditions under which a belt can be used is when running horizontally, with the draft on the under side of the pulleys, and, of course, the slack or sag of the belt on top; thus wrapping a little more of the circumference of both pulleys when at work. On the contrary, a vertical belt, if of considerable length, is always in difficulty without A. M. SWAIN. North Chelmsford, Mass. # A Hallstorm at St. Louis, Mo. To the Editor of the Scientific American . A severe hail and rain storm took place here on May 19, 1873. All day the weather had been sultry, and at about it began to rain, and soon the hall came pelting down thickly and fast, with an occasional heavy dash of rain. In eight minutes the thermometer fell 24°, and, in twenty-five minutes after the thermometer was at the maximum of 85°, it fell to its minimum, 57°. The storm came from the southwest, and was a thunderstorm, with hall and rain. The wind was from the southwest when the storm began, but suddenly changed around to the northwest and then to the northeast. Many of the hallstones were of extraordinary size; one weighed over half a pound when it fell, for it weighed 64 ounces 3; hours after the storm was over. At the time it was weighed, it measured 31 inches wide by 12 inches thick. St. Louis, Mo. GEORGE W. ALLEN. To the Editor of the Scientific American . On page 309 of your current volume is illustrated a theory on the above named subject, in which it is claimed that the atmosphere acts as a concavo-convex lens, by which the sun's rays are concentrated upon the surface of the earth. To my mind, this cause is quite insufficient to produce the great difference of temperature between the higher and low er strata of air, and for these reasons: The extent of the atmosphere above the earth's surface (supposed to be 50 a long time; it is one of high importance; nevertheless there miles) on all sides, viewed in its ratio to the earth's size, is as 1 to 80; hence the earth can obtain no more rays of solar heat with its atmosphere than it would if $\frac{1}{80}$ were added to its diameter and it had no atmosphere; and this would be quite insignificant. If the depth of the atmosphere bore anything like the proportion to the earth's size as it does in the illustration to the article, the case would be quite differ-If the writer will draw his figure in true proportions, he will see at once that the heat rays have so very short a distance to traverse, after being refracted, before they reach the earth's surface that their convergence is imperceptible see no more mystery in the accumulation of heat on the surface of the earth than I do in the accumulation of snow flakes there. While in mid-air they are not arrested, and this is precisely the case with the rays of heat; they accumulate only where they are arrested by some more or less solid substance. The low temperature of lofty mountains has sometimes een attributed to the rarity of the atmosphere through which the rays pass, by which the heat fails to be intensified, as it is supposed to be in some mysterious way when passing through denser air; but I think a more probable cause is simply that, so very small is the area of space where the rays are lodged, being surrounded by so vast a body of cold air continually floating upon it from all sides, the heat is carried away as fast as it is received; but on lower ground, where the rays are being retained for thousands of miles on the same plane, the heated air simply moves from one locality to another, the mass remaining nearly of the same emperature. The clear atmosphere is evidently not perceptbly warmed by the passage of the sun's rays through it, but rather from its contact with the earth and solid substances on its surface where the rays are arrested; and thus, as this heated air rises constantly, mingling with cooler air above, there is secured the most beautiful system of circulation which even the Infinite Wisdom could devise. Milford, Mass. E. BROWN. # Horse Power. To the Editor of the Scientific American Seeing a communication on page 320 of your current volame, on the power of horses, I am reminded of some notes which I took of the work of a pair of horses cutting wood at a railroad station. They weighed 2,000 pounds, 1,000 each, and worked on an endless bed power machine, such as is used in New England for threshing grain. The bed was raised so as to incline 31 inches to the foot, and ran at the rate of 105 feet per minute, making a rise of 281 feet per minute, which of course is equal to 2,000 pounds falling 281 feet a minute, which would make 57,000 foot pounds per minute, including friction, which in that class of machinery would be enough to make it up to 66,000 pounds, the standard of two horse power. This amount of power would cut, with the ordinary sawing arrangement, 15 cords of mixed wood (hard and soft, 4 feet long), 2 cuts, in 10 hours and do it day after day. The horses were not harnessed, but merely tied by a halter, so that it was actual weight that drove the saw. It was so good an illustration of the power of a falling weight that, eing very much interested in such matters, I took down the figures, thinking that they might be of use or interest at some time, as a criterion to judge from in working or using the power of the horse. # Boller Explosion at Syracuse, N. Y To the Editor of the Scientific American: I wish to remark upon the cause of a disastrous explodon which occurred in our city on May 5, 1878 The boiler was a portable one, of about 10 horse power. It was about 10 feet long and of 30 inches diameter. 24 three inch flues, and a furnace 3 feet 3 inches x 2 feet 1 inch, with a water bottom. The inside sheets of the furnace were $\frac{5}{16}$ of an inch thick, of an excellent quality of iron. The entire outside firebox and shell were of $\frac{1}{4}$ inch iron, of a poor lamellar crystalline structure; the quality, however, was no worse than is usually used for the outsides of such boilers. The stay bolts in the furnace, crown sheets, etc. were insufficiently riveted over on the inside, which was the and spring balance, the nut of which I found screwed down 31 inches upon the stem. It is well known, among railroad men at least, how the steam pressure used to run up in the boilers with the old style of spring balance; the only way to reduce such excess was to slack off the thumb nuts. It is easy to imagine that a boiler, short of water, the engine
standing still, will rapidly get up steam; and there was an immense fire in the large furnace of this boiler, of tar barrel staves, left to itself and to the mercy of a safety valve as described above. Of course, the engineer is not to blame, his employers? The cause of explosion was an excessive sign of wear. to resist the action of the strongest acid; commenting upon | The Concentration of the Sun's Heat upon the pressure of steam, from over firing and the center of the crown sheet being dry and overheated. The effect of these combined causes was a reversal of the arch of crown sheet, which was then the cause of the destruction of the other por tions of the boiler. It is seldom that the causes of explosions are as visible as they were in this case, and in one which occurred at the Geddes rolling mill some time since. OPERA MUNDI. # Diving Bells, To the Editor of the Scientific American It has occurred to me, while reading in your current volame an account of a submarine observatory and photographic gallery, invented by M. D. Toselli, that, instead of the top chamber for containing respirable air (which the operator will consume in a short time), he should take with him the materials used for evolving oxygen gas; he could then stay under water for a longer time. Oxygen gas is generally obtained from substances by heat; but if aqua regia be poured on black oxide of manganese the as is evolved without any other aid. Philadelphia, Pa. # A NEW PREVENTIVE FOR SLIPPING BELTS. We doubt if any more prolific source of loss of power in its transmission from motor to work exists than through the medium of slipping belts; nor, as a moment's consideration will show, is there any ordinary mechanical defect more destructive to that system of careful economy which should be the rule in every well regulated workshop. It is of little use to maintain and run a powerful engine, if the very power which represents the cost of so much labor and so much fuel is to be wasted before it can be applied to useful purposes. Suppose, for example, a pulley makes 100 revoutions per minute. Experiments conducted in England in 1863 proved that, when the power is transmitted by belting, there are, out of this number of revolutions, two slipped. Clearly, then, but 98 per cent of the power is forwarded to the work; and if there be numerous intermediate gearings, a still proportionally less fraction of the original efficient labor of the engine becomes utilized. In a case of which we were recently informed, fully 8 per cent of the power was thus totally lost. For a 200 horse power engine, 8 per cent means 16 horse power thrown away, or at a low estimate 32 pounds of fuel per hour burned without producing any other result than wearing out the belt and heating the There are, of course, means for obviating slip to a certain degree. Probably those most commonly employed are the reprehensible habit of covering the periphery of the wheel with oil, resin, or adhesive matter, or of tightening the band, thereby bringing heavy pressure to bear upon the journals, increasing the friction and expediting the wear of the belt. Better than either of these is a plan which has lately come under our notice, which consists in covering the pulley with a flat band of elastic rubber and cloth made about one inch per foot shorter than the circumference, and with its inside face unvulcanized. This is stretched around the wheel and cemented fast. It is plain at once that, by this means, friction between belt and pulley must be materially increased, but to what extent the following results of experiment will best show. The tests made in our presence were conducted on an special apparatus consisting of two 12 inch pulleys on a shaft in bearings so that it could freely revolve. Upon one wheel the inventor (Mr. John W. Sutton, room 2, 95 Liberty street, this city) had placed his cover; the other had a plain smooth face. Over the plain wheel was passed a four inch belt, one end of which was secured to the floor: to the other extremity (the slack side of the band) were hung adjustable weights. Upon the covered pulley a two inch belt was placed, which also carried a weight at one end but at the other was attached to a hand lever. On suspending 29 pounds to the small band, and some 60 pounds to the large one, it was found, on applying a pressure to the lever, that the smooth wheel was caused to slip with great readiness. Without augmenting the weight on the small band, that bearing upon the smooth wheel was increased to 108 pounds, in spite of which the latter was easily and by the same means made to slip. Above this limit, however, the power of the covered wheel did not extend, and on the addition of more weight it also began to yield. The result may therefore be summed up in the fact that the friction of 29 pounds opposing the pressure of a hand lever on a 2 inch belt, aided by the pulley cover, was sufficient to overcome the friction of 108 pounds acting on a four inch belt, opposing a solid support, but applied to a smooth though otherwise similar pulley. A second test was made with a smaller apparatus having an 8 inch pulley and a 1 inch belt. The result was gained by the aid of a lever and steel yard suitably arranged. With only defect of workmanship which appeared to exist. But the safety valve was much too small, and the manner of weighting it was bad. The diameter of the opening was but 1 1 inches, and the valve was held down by a lever the above that the claim of the inventor, that his device will transmit 100 per cent more power than the smooth pulley and consequently do twice the work before the belt will slip, is well founded, as such estimates are manifestly much below those obtained by actual trial. So simple and effective an invention as this is worthy of the attention of machinists generally. It is readily and quickly applied, and in point of expense is inconsiderable in comparison with the economy which its employment must produce. We are informed that it is durable. The examas (being green) he knew no better; but what can I say of ples now in use for fourteen months exhibit no appreciable shown is 16 inches in diameter by 3 inches on a steel arbor 2 inches in diameter. The Journal boxes are each 9 inches long. The table is 29 inches by 8 inches, and is faced with an accurately ground steel plate, in which is an opening over the top of the omery wheel. If so desired, this plate can emery wheel. If so desired, this plate can be of sufficient size to cover the whole sur-face of the table. The adjustment is ef-fected by turning the hand wheels, which are on the same rod, and are shown at eith-er end of the table. Motion is transmitted through the worm and crown gear close un-der the table to two inch and a half screws, working in the two vertical sleeves similarly located. This adjustment is very accurate and, if desired, very slight, even to the $\frac{1}{500}$ of an inch. The vertical screws are hidden from view by the sleeves, which work an the principle of the tail stock to work on the principle of the tail stock to a lathe. The support through which the sleeve operates is fastened to the frame of the grinder at each end by a bolt and nut, and is leveled and adjusted by four set It is well known that all makers of solid ery wheels manufacture their products with the same general gradations of coarseness and fineness, dependent on the size of grain emery used. In addition, however, te the varied qualities produced by these differences, the Tanite Company's wheels possess others, dependent on their special processes for tempering the wheels. Thus, if two wheels are made of the same sized emery, and one is for edge and the other is for surface work, they are so varied in tem-per as to fit each for its special use. This difference in temper is seldom understood by the users of wheels, who, supposing all to be alike, except in point of coarseness, subject all to similar treatment, and thus, through misusing the goods, fail to obtain proper results. The machine now illustrated is specially wheel and small product of work. The adjustments of this machine are claimed to be such that the least steady and most heavy handed workman can-not fail to bring wheel and metal together in light and even contact. It is unnecessary for us to point out to machinists generally that this use of wide-faced wheels, properly tempered and so mounted that they cannot be recklessly used up or worn out of shape, is an important step toward making solid emery wheels as successful for grinding large flat surfaces truly as they now are for general edging, spruing and rough grinding. The varied uses of this machine are obvious and will readily suggest themselves. For further information address the Tanite Company, of Stroudsburg, Monroe Co., Pa., as per advertisement on last # LOCK ENVELOPE. There are few who, at some period, have not experienced the annoyance of receiving or sending letters, the envelopes of which have, through a careless handling or other causes, sprung open in their transit. In the course of a voluminous correspondence, such as is carried by express companies and | youd its influence. TANITE EMERY GRINDER WITH ADJUSTABLE TABLE. large business houses, improper scaling of missives is very No. 4 TANITE EMERY GRINDER WITH ADJUSTABLE TABLE. designed to prevent this misemployment of wheels tempered as in the upper figure, and the latter is then easily pushed | cavity at the bottom of the recess. The top of the guide forms for surface operation, which are so constituted that a too through the opening in the upper fold. The horizontal porheavy or an unequal pressure results in rapid wear of the tion of the cut then admits of the slip being spread out flat, when, its back being gummed and moistened, it adheres to > The efficacy of this device is obvious from the fact that, even in case the paste does not stick, it is impossible for the dovetail to come out of the slit unless it be
deliberately folded and pushed through. For circulars and other documents generally forwarded unsealed, this envelope is also well > For further information address the inventor, Mr. J. D. McAnulty, No. 127 South 9th (corner 4th) street, Williams burgh, L. I. # Perfumery and the Sense of Smell, It may be doubted whether anything is really known re garding the actual composition and nature of the substance of most of the pleasing odors. We know perfectly well, says Mr. James Paton, the bodies which yield odors, and chemists can tell with absolute precision what is their chemical struc ture; but although they can further tell the conditions es sential to the sensation of smell, the subtle essence which gives rise to it appears to be too ethereal for human detec tion or manipulation. A grain of musk will perfume millions of cubic feet of atmospheric air and still it continues apparently a grain of musk. The following minute quantities of different substances spread out on the surface of smell cause a distinct sensation: Phosphoreted hydrogen, 1000 grain; sulphureted hydrogen 3 3 0 0 0 0 grain; bromine, 40 6 0 8 grain; oil of resin, 13 0 0 0 0 grain. A still smaller quantity of musk than the last given smells strongly, but the actual measure has not been ascer- It is assured that, for the perception of an odor, it is ne cessary that the body to be smelt must be in a gaseous condition, just as it is required that, before we experience a aste, the substance must be dissolved; and for the sensation of touch, a resisting solid is necessary. Odorous gases are such as are readily and energetically acted on by oxygen and the presence of oxygen is therefore a necessary condition of smell. Such gases as mix freely without uniting with oxygen-as hydrogen and nitrogen-are inodorous. In order also to experience the sensation of smell it is necessary that the odoriferous particles impinge with some violence upon the surface of the sensitive membrane in the nose which corresponds with the olfactory nerve; therefore, when we wish to experience a strong sensation of smell we sniff strongly, and when a disagreeable odor is to be avoided, we hold our breath, and breathe out when we think we are be # Manufacture of Carmine The accompanying illustration shows a machine designed to run emery wheels for accurate facing or grinding on surfaces. The principal difficulty encountered in performing this operation has been to so hold the work that the metal being ground should press evenly at all parts cut by the wheel, and yet not bear so heavily as to generate too much frictional heat, which frequently causes injury to both the metal and the emery wheel. The Tanite emery wheel here shown is 16 inches in diameter by 3 inches face, and is run on a steel arbor 2 inches in diameter. The the insect kingdom. The excellence and purity of this color and vermillons—in fact, of all colors-depend on careful and thorough washing in water. Some vermilions are washed as often as sixteen times before the pigment is sent to the drying rooms. In the manufacture of some of the finer colors, too, milk, eggs, or cheese are used with the chemicals as purifiers. The most sur-prising thing, says a correspondent of the New York Times, describing the Plymouth Color Works at Bergen Point, N. J., is to see the water that is drawn off from the huge tanks of color after it has been well stirred and washed. The tanks being lined with fine muslin, not a particle of color escapes, and the water is pure and clear as drinking water. Lakes of different shades are made from carmine combined with a chemical body, which cheapens the color and makes it of any desired bue. Rose pink and cheap lakes are made from a decoction of a red wood waich is found in Brazil. Pure carmine is very expensive, costing in bulk at wholesale \$8 a pound. # IMPROVED SPINDLE STEP. The object of this invention is an im-proved construction of the steps of mill spindles or other vertical shafts, whereby they are made adjustable to compensate for the wear of the bearing surfaces The illustrations show, Fig. 1, a perspective view with a portion broken away, and Fig. 2, a vertical cross section. In the base, A, of iron is formed a recess, the walls of which are screw-threaded to receive a correspondingly formed guide or bearing, B. The latter is constructed with an inverted conical opening to inclose the toe of the spindle, C, the end of which extends through and rests upon the upper of two or more hardened steel disks, D, placed in a suitable a collar, E, which is seveled off around the interior to receive oil for lubricating the spindle. The passages, F, in the base also serve to conduct lubricating material to the spindle toe. G is a lock nut screwed upon the guide between the collar and the base. In the engravings, Fig. 1 shows the guide let into the base to the full extent and locked in position by the nut, G, screwed down to bear upon the upper surface of the latter. As the guide becomes worn by the rotation of the spindle, it is unscrewed and moved up, Fig 2, to the requisite hight to fit the toe snugly and prevent the spindle from vibrating or running out of true; thus, in short, compensating for the wear. The nut, G, is then again screwed down to lock the parts in place. By using a number of disks, D, one, two, or more can be removed as the spindle drops down, thus adjusting the step regularly to supply the deficiency by wear. The invention appears durable and simple Its efficiency will doubtless be proved by actual employment. Patented April 1, 1873. For further information address the inventor, J. J. Henry, 236 Lexington st., Baltimore, Md. # CAR AND PASSENGER ELEVATOR. Our illustration represents a proposed method of securing rapid transit between Hoboken (opposite New York city, in New Jersey, east of the Palisades), and Jersey City Hights, North Bergen, Bonnville, and other localities in Hudson county, in that State. The topography of the route is very irregular, necessitating circuitous roads to avoid high eminences, and rendering a direct path by ordinary means impracticable. The present system is now being carried out by the Hudson County Elevating Company, an association incorporated "to erect elevators, driven by steam or other power, at the base of Jersey City Hights or Palisades, at such points as said Company may select, for the easy elevation of street cars, teams, passengers, etc. The mechanism of the invention was devised by Edwin L. Brady, civil engineer, of Jersey City. The lifting cars the car, to which wire cables are attached. To the latter steam power is applied, which it is estimated will accomplish the lift of 200 feet in about one and a quarter minutes. Safety idlers, moving on independent cylinders, are arranged, and a system of check pawls, attached to each of the eight iron columns, are also provided to guard against any danger of accident. Each column will be twentyfour inches in diamter and, with the exception of the two upper sections which are of wood, constructed entirely of iron. They will be securely adjusted by iron truss braces, and strongly keyed to the rocky sides of the At the base of the elevator two large buildings are to be erected, in order to afford means of utilizing the surplus steam power. Ample room will be provided for elevating cars and teams and for the transportation of one hundred foot passengers at once. Galleries will he added to the upper portions of the structure, from which a fine view of the surroundings will be obtained. The work now in progress, it is estimated, will be completed by the first of July next. Should the plan be found feasible for elevating horse cars, teams, and passengers, it is not unlikely that the railroads extending westward may adopt a similar plan for taking their passengers over the hill instead of through Bergen tunnel, which Erie, and the Delaware, Lackarailroads now have to traverse The Planet between Mercury and the Sun. At a recent meeting of the Manchester Literary and Philosophical Society, Mr. Joseph Sidebotham, F.R.A.S., said: As there is again some speculation as to the existence of an intra-mercurial planet, and every little fact bearing on the subject may be of value, I have referred to my diary, and find that on Monday, March 12, 1849, our late member, Mr. G. C. Lowe, and I saw a small circular black spot cross a portion of the sun's disk. We were trying the mounting and adjustment of a seven inch reflector we had been making, has a large round protuberance like a swelling, while on each and used an ink box between the eye piece and the plane side of the head, near its base, appears a similar immense speculum. At first we thought this small black spot was ball. The eye is prominent, very bright, and is of a bright manufacture of carbonate of potash, and we watched its progress across the disk for nearly half an hour. The only note in my diary is the fact of the spot being seen; no time is mentioned; but if I remember rightly, it was about 4 o'clock in the afternoon. # Nickel Plated Speculum, In a letter which Mr. Sidebotham had received from Professor Hamilton L. Smith, of Hobart College, Geneva N. Y. the writer suggests the use of iron or bell metal specula conted with nickel, for reflecting telescopes. He says: "I ground and prepared a bell metal speculum, which I coated with nickel, and this, when polished, proved to be more reflective (at least I thought so) than speculum metal. The two objects which I sought were, first, to have a polished surface unattackable by sulphuretted hydrogen (this, for example, is not injured by packing with lucifer matches), and, secondly, for upon the eye piece, but soon found it was on the sun's disk, hazel or yellowish color, leaving the pupil brown. The fore feet, or hands, bave the fingers formed very like the human hand, while the thumb or toe, corresponding to the human thumb, is quite short and is large and round. The joints are protected and covered by a
formation resembling armor, and the body and tail seem at first glance to be free from scales, though a closer examination shows the scales to be small and smooth. The reptile has not yet been identified as belonging to any species heretofore known, as it does not appear in Cuvier. It is the intention of Dr Woodward to kill it and prepare the skeleton for mounting; but it has been suggested that a cast be taken, before killing, for exhibition in the collection of the Smithsonian Institute. # The Salt Deposits of Western Ontario, Canada. The superficial area of the Ontario salt deposits is comparwill be constructed entirely of iron, with strong angle iron large specula, doing the most of the work by the turning tool atively small, and the whole salt bearing district may be inframeworks, all centering upon a huge ring bolt at the top of and lathe. I really think a large, say three feet, mirror, cluded within the counties of Huron and Bruce. Mr. John Gibson, B. A., in a paper in the American Journal of Science and Arts, gives some interesting facts regarding the principal wells, eight of which he has recently exville well was sunk 1,244 feet, and then abandoned. The position of the boring marked the northeastern margin of the ancient salt lake, and the geological horizon of the salt was passed without the least evidence of its occurrence. The Kincardine well reached a depth of 957 feet, and the Goderich company's boring struck the salt rock at exactly 1,000 feet below the surface. From this depth was obtained, by pumping, a saturated brine from which large quantities of salt continue to be manufactured. The salt bearing stratum lies immediately at the base of the Onondaga formation, and is at once recognized by the presence of saliferous and gypsiferous magnesian marls, lying as a general rule above the salt bed. The Domi nion well was sunk 1,113 feet, and the brine pumped up constantly marks 87° salinometer, with a temperature of 62° Fah. Hawley well extends 967 feet, and the Clinton well 1,136 feet. From the Stapleton well, 1,220 feet in depth, brines of great purity are yielded. It may be mentioned that the prevalence of vast quantities of gypsum and salt in a mixed state naturally suggests the utility of a shaft by which not only could pure rock salt be obtained, but also the combined gypsum and salt for agricultural purposes. The drilling done in Coleman and Gowinlock's well is said THE CAR AND PASSENGER ELEVATOR; IN JERSEY CITY. ccated with nickel, but cast of iron, and finished mostly in | to be unprecedented, both for speed and absence of mishaps. the lathe, while it would not cost the tenth of a similar sized one of speculum metal, would be almost equal to silvered of glass the same size, and vastly more enduring as to polish. # Iguana or Tree Lizard. The largest specimen of the iguana or tree lizard of South America that has ever been seen in this country was lately re ceived, in good health, at the Army Medical Museum, Wash ington. The reptile is almost entirely black, or a dark chocolate brown, is thirty inches long, and on the top of the head Actual boring commenced on the 10th of March, 1870, and the salt-bearing stratum was reached on the eve of the 22d of the same month at a depth of 1.035 feet. After passing through 100 feet of pure rock salt, without the least evidence of change, the boring was abandoned. In no other portion of the American continent has there been discovered a deposit of salt so magnificently great. The supply is practically illimitable and may favorably compare with the production of the salt mines of Droitwich, in central England, or with that of the solid salt hills of Cordova, THE residues from molasses are used in France for the ### Anzesthetics. This is a term derived from the Greek word anasthesis, caning those agents which, like altrous oxide, ether, and chloroform, produce insensibility to pain That there are two sides to every question is very forcibly illustrated in the attempt to place the honors of the discovery of anæsthetics where they rightfully belong. In a recent scientific lecture, on this subject, delivered here by Dr. Sims, he awards the credit of first using anæsthetics, for the relief of human sufferers under disease or surgery, to Dr. Wells, of Hartford, Conn. The Eccasing Post, of this city, in commenting upon the statements of Dr. Sims, The difficulty with Dr. Wells' claim is that, though he experimented with anathesias, with nitrous oxide gas, per-haps with ether, he never established their use. The real question at issue is, not who discovered the possibility of oducing insensibility under surgical operations, but who stablished the possibility with a known agent and brought Sir Humphrey Davy, early in this century, relieved pain by the use of nitrous oxide gas, and suggested that it might be used with advantage during surgical operations Pliny, and some Greek physicians after him, recommended the use of certain herbs, especially of mandragora, for their soporific power; and, said one of them: " Medical men use it for those who are to be cut or cauterized." The Chinese who preceded the western world in so many discoveries, are supposed to have used anothesia at a remote age. In the middle ages, other agents were used for the same purpose. In 1823 Mr. Hickman, a surgeon of London, and in 1833 Dauriol, a French physician, used gas, and, they asserted, successfully. Other French physicians, recommended and performed operations with some success when patients were under the influence of alcoholic intoxication, and later mes merism was suggested and tried in some cases. Thus for many centuries, alleviation from pain has been sought for discoveries have been made, and perhaps some limited practical application of them maintained; but the man had not yet appeared who had made it clear to surgeons and to the world at large that any of the known agents were so safe and so available that they could be brought into common Neither Jackson, Morton nor Wells, then, was the discoverer of anæsthetic agents, any more than Fulton discovered steam, or Morse, electricity. The question is: Which of them first successfully applied such an agent and established its general use? Unquestionably Wells tried, as others, scattered along through the centuries, had tried before and failed. He pulled a few teeth, but either he wanted the energy or the confidence to persevere; Jackson understood the properties of ether, gave some instructions to Morton; perhaps he even recommended ether to Morton as the agent he was in search of, but he did not establish its use; there is even evidence that he doubted if it could be used without danger, to produce insensibility. But it was Morton who had the energy and perseverance to insist upon trial after trial till the virtue of the remedy was established to the satisfaction of the world at large. It is the first step that costs and counts, and that step was Morton's. In reply to this, Dr. G. Q. Colton very emphatically upsets the theory of the Wells abandonment. "We have," he says, "the sworn testimony, of about forty of the most respectable citizens of Hartford, that during the years of 1845 and 1846 Wells extracted teeth for them without pain, using the gas as the anæsthetic. He was in constant use of the gas for about eighteen months, when his health gave way, and he went to Europe. Even in Europe he did not abandon his discovery, for he presented his claims to the Academy of Sciences in Paris, and that institution, in recognition of the services, conferred on him the title of M. D. As soon as Wells returned to this country he resumed the use of the gas, and continued it until his death, which oc- curred on the 24th of January, 1858. But he met the most determined and bitter opposition from all quarters. It was at that time too much to believe nel leading to the tanks has its course interrupted by numer that the inhalation of so little gas or vapor would deztroy ous ledges, which serve to cause the more perfect intermix the pain of a surgical operation! Dr. Wells did all that a ture of the sewage and the disinfectants. The first tank in of the discovery because the public were incredulous and repudiated his claims? Wells died before the merits of the gas were generally recognized. After his death Dr. Morton set up the claim that water is conducted to the river, appearing as a clear, inodor nitrous oxide was not an amenthetic, and therefore that Wells had discovered nothing. No one had used the gas to produce ansesthesia save Wells, and Morton was enabled to gain a general assent to the position he took, namely, that, forms the first of the series. As much of the water as pos nitrous oxide not being an anæsthetic, therefore he, Morton, sible is then run off from the mud, and the latter is drawn was the discoverer of anxithesia! If at that time and dur into the acidifying tanks, where a small quantity of sulphu ing the lifetime of Mr. Wells the gas had proved to be what ric acid is added to prevent the loss of any ammonia. From safest anæsthetic known, we never should have heard drying presses, whence it issues in a cake. of Morton as the discoverer of anesthesis When I revived the use of the gas in 1863, I had this gen eral incredulity respecting its powers to contend with. was met on all sides by the assertion that Wells had tried the inoffensive powder, falls from the other end, at the rate of gas and it had proved a fallure. I expended eight thousand dollars the first year in advertising, advocating, and defending it; and in all this time did not realize a dollar of profit from my business. Is it any wonder that poor Wells, who had no money to spend, should encounter opposition and open air stanks, where it dries under the influence of the discouragement in its first introduction? It should be remembered that Wells' first experimentfor which I gave him the gas-was on the 11th of December, 30th of September, 1846; also that Morton was
stimulated to this experiment by information derived from Wells and newspaper notices of Wells' operations. In view of all these facts," says Dr. Colton," how can any one hesitate to award the honor of the discovery of anæsthe sia to Dr. Wells? # The A B C Process,---London Filth transformed into Shining Gold. The process of precipitating by sulphate of alumina the valuable constituents of sewage, and utilizing at the same time the purifying power of charcoal and clay, is that to of sewage, the works of the Native Guano Company are ca which, says the Journal of Science, we decidedly give the public of dealing in the twenty-four hours with 500,000 gal preference, as by this means the water is practically purified fit to be discharged into a running stream, and the deposit is retained in a form entirely inoffensive and capable of being turned into a dry and portable manure. This process has been before the world for some years as the A B C process, being derived from the initial letters of the principal constituents of the precipitant: alum, blood, clay and charcoal. In contact with sewage-a slightly alkaline liquid charged with nitrogenous organic matter—the alumina is separated in flocks, and, by virtue of its remarkable affinity for dissolved organic matter, each particle seizes hold of, and drags down with it, a corresponding particle of nitrogenous impurity The blood here comes into play; this is essentially a liquid highly charged with albumen; albumen is instantly coagu ated in the presence of alum; and in the same way as this ready coagulability of albumen is utilized in fining wine and coffee, so it is made use of in this process by joining with the alumina in its precipitation, uniting it in a network of fibors, and giving it, as it were, arms wherewith to seize upon and drag out of solution still more putrescible consti- But the precipitated hydrate of alumina is light in charactor; and although it would ultimately settle, leaving a clear liquid above it, the slightest agitation causes it to float up, and thus renders it difficult, on the large scale, to drain off the mud. Here the action of the clay is apparent. This substance has a curious physical property; when finely ground up with water, it forms a creamy emulsion, which takes many days to settle. But when this creamy liquid meets with sulphate of alumina, the clay coagulates like albumen, and settles down in heavy granular flakes. Now in the A B C process these three precipitations—that of the alumina, that of the albumen, and that of the clay-take place simultaneously, and in each other's presence; they become closely locked together in a triple alliance; the heavy character of the clay particles gives density to the mass, and causes it to settle rapidly, and remain in a compact form at the bottom of the tank. There still remains the probability, if not the certainty, of foul gases being present, while the water, though clear, may nevertheless be colored. These residual impurities are at-tacked by the charcoal; the powerful affinity of animal char coal for organic coloring matter corrects the one evil, while the well known absorptive action exerted by vegetable charcoal on the gaseous products of putrefaction corrects the The method of applying the ingredients is extremely sim-The clay and charcoal are incorporated in a grinding mill, with the aid of sufficient water to form a thin paste This paste flows into a tank, and is constantly agitated until it is required to be mixed with the sewage. By the side of the mixing room is a smaller room, through which passes a channel or trough. At one end of this channel there rushes in the London sewage, and with it an unmistakable odor. The B C mixture, or thin water paste of clay and charcoal is admitted to the trough by a pipe from the store tank; the sewage in its passage past this pipe carries with it the mix ture, and the two, after well mixing, proceed on their way past a second pipe connected with a tank containing a supply of sulphate of alumina dissolved in water. All that is now requisite is to allow the sewage, B C mixture, and alum to flow in inodorous company to the settling tanks. The chanture of the sewage and the disinfectants. The first tank in man could do, while he lived, to prove to the world the value of his discovery. Should he be deprived of the honor portion of the precipitate. The clear water is allowed to flow off continuously from the first tank into a second tank; and the remainder of the mud is deposited in this and in the other tanks into which it flows. From the last tank the mud is then further dried by a most ingenious application of from 8 to 20 per cent, and, in certain breeds of cows, may heat in revolving iron cylinders. The wet mud is passed in at one end, and dry manure, in the form of an inodorous and 5 tuns in ten hours, at the expenditure of a few hundredweights of coal. If space enough be available, the mud may be simply pumped, from the bottom of the settling tanks, into large sun and air. Not the slightest offensive odor is apparent during any stage of this drying. The dry mud in powder, forming excellent manure, is re-1844, and that the first experiment by Morton was on the moved from the sheds, and packed into bags for transport. Crossness is situated on a projecting part of the southern shore of the Thames, between the Plumstead and Erith marshes, and is the southern outfall of the London drainage. The quantity of sewage now daily discharging at Crossness is 50,000,000 gallons. Large as this quantity may appear, the enormous engines employed in pumping the sewage are fully equal to the task, for they are capable of lifting 280 tuns in a minute, or nearly double the average flow. The transformation of such a mighty mass of filth into heaps of shining gold is a feat worthy of the days of the alchemist, or rather of the days of modern chemistry. Of this quantity pable of dealing in the twenty-four hours with 500,000 gallons, drawn from the cross-cut or culvert through which the sewage runs into the principal reservoir. This quantity amounts to 1 per cent of the whole delivery. Thither the sewage flows into the sump of a pump worked by a 15 horse power steam engine, whence it flows into contact with the A B C constituents as we have described. A B C constituents as we have described. During an official trial, lately completed, extending over eighty days, there were used 80 tuns of dry A B C materials, while the "native guano" obtained amounted, in the dry state, to 131 tuns, showing an increase of more than 63 per cent. The amount of sewage treated during this time was 11,672,000 gallons. Therefore I tun of dry native guano was obtained from 89,100 gallons of the Crossness sewage With scarcely an exception, the farmers are unanimous in their approval of "native guano:" many of them, sbrewd, intelligent men, well acquainted with the various artificial manures in the market, have tried "native guano" with intelligence on different fields against other manures, and were assured that, putting equal values per acre, it was superior to most manures in the market. # SANITARY NOTES ... MILK AND ITS ADULTERATIONS. It is proposed in this paper, drawn from the report of Dr. A. H. Nichols and Professor J. F. Babcock, to consider brief. ly the various methods which are resorted to for the purpose of adulterating milk, and the means which have been afford ed to us by chemistry for their detection # THE COMPOSITION OF MILK. Genuine milk is composed of water holding, either in sus pension or solution, fat globules, casein or cheesy matter, sugar, and various mineral matters or salts. It is a physiclogical fact that the quantity and quality of milk may vary, not only in different cows, but in the same cow, this vari ation depending upon: 1. The breed of the cow from which it is obtained. Alderneys, for example, give milk containing a large proportion of cream, and hence forming a very nutritious food for infants; while Durhams produce a fluid richer in casein and, on this account, especially adapted to the manufacture of cheese. 2. On the number of calves born, and time since calving. Less milk is given with the first calf than with the subsequent ones; and for a week or ten days after every birth a yellow, thick, stringy substance, called colostrum, is secreted, which is unfit for use. 3. On the character of the food furnished to the animal. When fed principally on carrots, there is a slight diminution in the amount of casein and butter and an increase in the quantity of sugar. This is still more marked when beet root is made the chief article of diet. If the food consists of the refuse of distilleries, the animals often become diseased, and the milk given is manifestly unfit for consumption. The yield of milk is most abundant in spring. In dry seasons the quantity secreted is less, but the quality is richer. An unpleasant taste and odor is said to be imparted to milk by an exclusive diet of turnips or oil cake, and the same is also the case when the cows feed upon wild garlic or other weeds an! leaves of plants where the pasturage is bad. 4. On the cleanliness and ventilation of stables, and care bestowed upon the animals. It often happens that milk, of high specific gravity and yielding a large per cent of cream, becomes so thoroughly impregnated with the vitiated air of the stable as to be decidedly repulsive to the taste. 5. On the time of milking. The afternoon milk is richer, on the average, by one fourth than that obtained in the morning, and the last portion of a milking is much the richest and is often reserved for cream. # METHODS OF EXAMINATION The hydrometer alone affords an imperfect test of the richness of a specimen, for many reasons, prominent among which is that the specific gravity of impoverished milk may be fraudulently lowered or raised by the admixture of various ingredients, principally water and salt. The ordinary specific gravity of milk at 50° Fah,
ranges between 1:029 and 1 037, and it is no secret to milkmen that this specific gravity is not much changed if four per cent of water be added for every one per cent of cream abstracted. The lactometer is simply a long tube graduated into a hundred pasts, and intended to indicate the percentage of cream which has spontaneously separated from the milk and risen to the surface within a given time. This quantity gene amount to even 50 per cent. The instrument furnishes no knowledge of other constituents, such as casein and sugar. The lactoscope determines the richness of milk by measuring its opacity, on the principle that, while the fat globules are opaque, the liquid in which they float is nearly transparent. It is considered to present no material advantage over the lactometer. The microscope enables the eye to estimate the number of fat globules a specimen contains, as well as abnormal constituents, infusoria or fungi which may be present. ADULTERATING SUBSTANCES AND HOW THEY ARE DETECTED. These are principally water, flour or starch, gum arabic or sugar, emulsions of almonds or hempseed, carbonate of sods, to fifty cents a quart. eggs and salt. We shall consider them in their order. Water lessens the specific gravity, and may be detected by measuring the density of either the milk, the skimmed milk or the serum. If a few drops of acetic acid be added to the milk, the fatty matter and casein will be coagulated, and may be removed, leaving the serum. The effect upon this substance by the addition of water is shown by the following: Serum containing percentages of water, | ure s | eru | m., | | 88 | | 1 | | (6) | * | 80 | 100 | | | | 100 | 80 | 6 | 8 | | | 2 | 18 | 1 | 1 | 029 | |-------|-----|-----|-----|----|-----|---|----|-----|---|----|-----|----|---|--|-----|----|---|---|---|--|----|----|---|---|-----| | ater | 10 | per | cen | t. | 100 | | 'n | ۰ | | | 111 | | | | | | | | | | | | | 1 | 025 | | | 20 | " | 022 | | | 80 | | | 4 | × | ě | ä | | | | ĕ | ĕ | ä | | | | Ŋ | W | ş | | į, | ķ | | 1 | 020 | | | 40 | | | | | | | ٠ | | | | į, | , | | | ٧. | | | | | | | | 1 | 017 | | | 50 | 014 | The quantity of water may also be estimated indirectly by determining quantitatively the a count of the solid constituents or of the milk sugar present. Flour or starch is easily recognized by adding a few drops of the tincture of iodine to the whey. If this produces the characteristic blue color, it indicates that some amylaceous substance has been added. Starch can also be found by the microscope. Gum arabic or dextrin is detected by the action of a small quantity of alcohol upon the whey. A dull abundant white precipitate falls, which may be proved to be gum by its properties, and which differs essentially from the light bluish or diaphanous flakes which alcohol produces in pure milk. Cerebral matter is usually some villanous mixture of the brains of sheep, employed to counteract the blue tinge of impoverished milk. It is rarely used; and if present, generally sinks to the bottom of the vessel. It may be made out by the microscope. Chalk or whiting is sometimes employed to neutralize the acidity of soured milk. Chalk is insoluble in milk, and hence will form a sediment, the character of which may be detected by the effervescence caused by a drop of acid. Turmeric or annatto is used to give a rich cream color. Evaporate a portion of the sample to about one eighth its original bulk, and add a small quantity of caustic potash. If the yellow color becomes brownish, turmeric is present; if bright red, annatto. Gum tragacanth, carbonate of magnesia and arrowroot add consistency and counteract the blue color of the milk. To detect the former, let the fluid stand for some hours and observe if any gelatinous deposit is formed. If so, wash it with water and test with a few drops of the tincture of iodine, when a blue color will be produced, due to the starch contained in the tragacanth. Arrowroot is detected by means of the microscope, by which instrument the round particles of carbonate of magnesia can also be made out. The latter will be found to disappear upon the addition of a drop of acid. Sugar, in the form of caramel or brown sugar, is used to add to the color and develop the flavor of impoverished milk. Its presence is ascertained by mixing a little yeast with the serum of the sample and exposing the mixture to a temperature of between 70° and 80° Fah. An abundant and rapid disengagement of gas will take place in the course of two or three hours, forming a sure sign, as pure milk cannot ferment in so short a time Emulsions of almonds or hempseed are inexpensive substances, and impart an unpleasant flavor to the milk. The addition of a few drops of amygdaline to an ounce of milk containing milk of almonds will cause a development of the odor of bitter almonds. Carbonate of soda is added to prevent milk from quickly turning sour. When this substance is present, there is a slight increase in the quantity of the cinerated ash, which will be found to effervesce upon the addition of an acid. Eggs, the admixture of which is one of the most harmless adulterations, are recognized by diaphanous clots formed in boiling the milk. When present in small quantity, the serum of the milk must be boiled, and the flocculi formed compared with the effect of boiling upon serum known to be Salt is understood to be used quite extensively to increase the specific gravity and develop the flavor of the milk. Its presence cannot be detected by the ordinary observer, but is made manifest to the chemist by the weight and taste of the # ADULTERATION IN LARGE CITIES. The report from which we draw our facts states that in large cities adulteration of milk is carried to an extent, the fearful nature of which is best evidenced by the mortality ong children, of which it forms the principal nourishment In 1868, the last year of which the records were published, 487 deaths of cholera infantum occurred in Boston, while, in The cause is attributed to the impure milk, which the country children were not obliged to live upon. It is stated that, in crowded localities, adulteration is the rule, and the fact is admitted by milkmen generally. It is estimated that the daily supply of milk for the city of Boston, for the year ending March, 1872, was 24,009 gallons, which, for the entire year, would amount to 8,763,285 gallons, the est of which, to consumers, may be reckoned at \$2,979 517. we assume the average amount of water, fraudulently added, to be but twelve per cent, and this is putting it at a low figure, the amount expended by the citizens during this year for water, spart from the legitimate water rates, amounted to the sum of \$357,542. To indicate more accurately the full amount of the fraudulent gains in this trade, there should be added to this sum the cost of an application for a patent. dextrin, cerebral matter, chalk or whiting, turmeric or the value of the cream poured off from the top of the cans, annatto, gum tragacanth, carbonate of magnesia, arrowroot, and sold by the milkmen at a price varying from twenty-five # Ship Canal in Scotland. The Calcdonian Canal, which, with Loch Ness and other akes, cuts across Scotland from northeast to southwest, for a distance of sixty miles, between Inverness and Fort William, affords easy passage to ships drawing not more than eighteen feet. The necessity for such a canal is not very great. It serves only to avoid the somewhat dangerous voy age around the northern extremity of the country. But what seems an unwise policy diminishes its usefulness to the smellest possible degree. The tolls are so high that commerce avoids it almost entirely. Steamers, which combine their own motive power with good passenger accommodation, monopolize the usefulness of the canal and pay tolls sufficient to defray the labor of working the locks. Main taining the canal is thus a large government charge for a very small result. A small toll would serve the country and the interest of the government to greater advantage. ---A NEW DIETETIC.-Dr. Goodman, writing to the British Medical Journal, says that artificial fibrin is an admirable dietetic substance, being unparalleled for lightness and digestibility, and a great delicacy besides. It is obtained by exposing albuminous material to the action of cold water for a time, the hen's egg, from its great abundance, being the most suitable source of the albumen. When the contents of an egg are immersed in cold water for twelve hours or thereabouts, they undergo a chemico-molecular change, becoming solid and insoluble; a change indicated by the opaque and snowy whiteness of the white. The action of heat to the boiling point is now brought into the process, and the fibrin is then ready for use. In cases of deficient nutrition and rejection of food, Dr. Goodman says this artificial fibrin is of the greatest service, as the weakest stomach is able to retain it, and its use appears to promote the app tite for food. --COLOSSAL BEER CASK .- The great Hungarian cask, which is capable of containing 2,000 einers (or 25,000 gallons) of beer and which has been sent for show to the great exhibition at Vienna, is made entirely of wood grown in Hungary, and is said to be a perfect marvel in workman- PROGRESS OF THE HOOSAC TUNNEL IN MAY, 1873.-Headings advanced from east end westward, 155 feet; from west end eastward, 120 feet. Advance during May, 275 feet. Total lengths opened to June 1st, 23,367 feet. Rock remaining to be penetrated, 1,664 feet; being 96 feet less than one third J. A. B. says; "I have taken the Scientific American ever since I commenced to learn my trade, and it is not too much to say that that journal has had a great deal to do with the raising of my salary from \$500 a year to \$1,700." # Value of Patents, AND HOW TO OBTAIN THEM. # Practical Hints to Inventors. ROBABLY no investment of a small sum
of money senge greater return than the expense incurred in obtaining a paten oven when the invention is but a small one. Larger invention are found to pay correspondingly well. The names of Blanchare Morse, Bigelow, Colt, Ericsson, Howe, McCornick, Hee, an others, who have amassed immense fortunes from their inve-tions, are well known. And there are thousands of others wh have realized large sums from their patents. HOW TO Patents # How Can I Hest Secure My Invention ! is an inquiry which one inventor naturally was another, who has ha experience in obtaining patents. His answer generally is as follow New York, together with a description of its operator and media. On we caight thereof, they will examine the Invention carefully, and advise up to its patentability, free of charge. Or, if you have not time, or the mean at hand, to construct a model, make as good a pen and ink skeek, of the improvement as possible and send by mail. An answer as to the prospec ### Preliminary Examination. In order to have such search, make our a written description of the invention, in your own words, and a pencil, or pen and ink, sketch. Send these with the fee of \$5, by mail, addressed to Musa & Co., 37 Park Row, and in due time you will receive an acknowledgment thereof, followed by a written report in regard to the patentability of your improvement. This special search is made with great care, among the models and patents at Washington, to ascertain whether the improvement presented is patentable. Rejected Cases. Rejected cases, or defective papers, remodeled for parties who have made optications for themselves, or through other agents. Terms moderateddress Menn & Co., stating particulars. # To Make an Application for a Patent. The applicant for a patent should furnish a model of his invention if susceptible of one, although sometimes "t may be dispensed with; or, if the invention be a chemical production, he must furnish samples of the ingredients of which his composition consists. These should be securely packed, the inventor's name marked on them, and sent by express, prepaid. Small models, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft, or postal order, on New York, payable to the order of Muxn & Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York cor respondents. Persons desiring to file a caveat can have the papers prepared in the shortest time, by sending a sketch and description of the invention. The Government fee for a caveat is \$10. A pamphlet of advice regarding applications for patents and caveats is furnished gratis, on application by mail. Address Munn & Co., 37 Park Row, New York. ### Reissues. A reissue is granted to the original patentee, his heirs, or the assignces of the entire interest, when, by reason of an insufficient or defective specifica-tion, the original patent is invalid, provided the error has arisen from inad-vertence, accident, or mistake, without any fraudulent or deceptive inten- A patentee may, at his option, have in his reissue a separate patent for each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other requirements of the law, as in original applications. Address Munn & Co. 57 Park Row, for full particulars. ### Design Patents. Foreign designers and manufacturers, who send goods to this country may secure patents here upon their new patterns, and thus prevent others from fabricating or selling the same goods in this marlet. A patent for a design may be granted to any person, whether citizen or allen, for any new and original design for a manufacture, bust, statue, sito relievo, or bas relief; any new and original design for the printing of woolen, silk, cotton, or other fabrics; any new and original impression, ornament, pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture. Design patents are equally as important to citizens as to foreigners. For full particulars send for pamphlet to Munn & Co., 37 Park Row, New York # Foreign Patents. The population of Great Britain is \$15,000,000; of France, \$7,000,000; Beltium, \$5,000,000; Austria, \$8,000,000; Prussia, \$9,000,000; and Bussia, \$7,000,000. Autents may be secured by American citizens in all of these countries. Sow is the time, while business is dull at home, to take advantage of these mmense foreign fields. Mechanical improvements of all kinds are always a demand in Europe. There will never be a better time than the present to take patients abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the patients secured in foreign countries by Americans are obtained through our Agency. Address Muns & Co., 37 Park Row, New York. Circulars with full information on foreign patients, furnished free. # Value of Extended Patents. Value of Extended Patents. Did patentees realize the fact that their inventions are likely to be more productive of profit during the seven years of extension than the first full term for which their patents were granted, we think more would avail them solves of the extension privilege. Patents granted prior to 1861 may be extended for seven years, for the benefit of the Inventer, or of his heirs in case of the decease of the former, by due application to the Patent Office, kinety days before the termination of the patent. The extended time feures to the benefit of the inventor, the assignees under the first term having no rights under the extension, except by special agreement. The Government for for an extension is \$100, and it is necessary that good professional service be obtained to conduct the business before the Patent Office. Foll information as to extensions may be had by addressing Muxys & Co., 37 Park Row. # Canadian Patents. Canadian Patents. On the first of September, 1872, the new patent law of Canada went into lorce, and patents are now granted to citizens of the United States on the same favorable terms as to citizens of the Dominion. In order to apply for a patent in Canada, the applicant must furnish a model, specification and duplicate drawings, substantially the same as in applying for an American patent. The patent may be taken out either for five years (government fee \$30) or for ten years (government fee \$40) or for fifteen years (government fee \$40). The five and ten year patents may be extended to the term of fifteen years the formalities for extension are simple and not expensive. American inventions, even if already patented in this country, can be patented in Canada provided the American patent is not more than one year old. All persons who desire to take out patents in Canada are requested to communicate with Muxn & Co., 37 Park Row, N. Y., who will give prompt attention to the business and furnish full instruction. # Copies of Patents. Persons desiring any patent issued from 1838 to November 28, 1867, can be applied with official copies at a reasonable cost, the price depending upon the extent of drawings and length of specification. Any patent issued since November 27, 1862, at which time the Patent Office summanced printing the drawings and specifications, may be had by remiting to this office \$1. A copy of the observable. A copy of the claims of any patent issued stoce 1835 will be furn name of patentee, title of layention, and date of patent. Address Munns & Co., Patent Solicitars, 37 Park Row. New York city. Munn & Co. will be happy to see inventors in person, at their office, or to advise them by letter. In all cases, they may expect an Annast agenium. For such consultations, opinions and advice, no charge is monie. Write plain MUNN & CO., PUBLISHERS SCUMMITTIC AMERICAN. 37 Park How, New York. OFFICE IN WASHINGTON-Corner F and 7th streets, opposite # Becent American and Loreign Latents. Improved Supplementary Wheels for Car Trucks Improved Washing Machine. turns, rabs, and present the clothes, thus washing them time, with comparatively small exertion in handling. The is in the double action of the beater by the motion of the reducing rubbing and pressing at the same time, the beater has against the rubber and pressing them against it and Rugene B. Tanner, Attics, Obio.—The object of this invention is to furnish to farmers and others a simple apparatus for hoisting, carrying, and depositing rapidly bay bales to the desired place in the barn, raving time and labor thereby. The invention consists of lever and guide pieces, in ronnection with a pulley having a weighted catch lever for suspending the load till ready to be dropped. Suitable guide strings and pulleys facilitate the rapid action of the conveying apparatus. Improved Stop Mechanism for Looms. Thomas Isherwood and William Nutrall, Westerly, R. I.—This invention consists of two or more wires, with devices for presenting them behind the weft thread at the middle of the lathe, or thereabout, after the shuttle passes, to insure the action of the weft fork or feeler for throwing off the shipper lever when the weft is present. It also consists of a novel arrangement of means for presenting the feeler to the weft in a suitable position in advance of the cloth, and then moving it away, so as not to interfere with the besting up of the weft by the reed. The arrangement of the stopping mechanism at the middle of the lay saves the necessity of employing one mechanism at the means of the lay saves the necessity of employing one near each edge of the warp. It often happens in looms carrying ceveral shuttles that the wefts break, so that the ends are long enough to raise the latches, owing to the cutting or overstealning of them in particular places by the boxes in which the shuttles are changed. Improved Skate. Wendell Straseer, Taylorav-lie, Ohio, This invention relates to an improved construction of skates
with a view to rendering them more durable, and their attachment to the feet more convenient, secure, and comfortable, enabling the repair or renewal of the runners to be more easily effected than heretofore. The runners are secured in a groove in an Iron which is secured to wooden soled boots or shoes, and said iron is detachable from the wooden sole by a peculiar but simple device. The runner is also readily Improved Lock Fastening for Mnil Ponches, etc. Brice X, Blvir, Huntington, Pa.—This invention relates to modes of conveniently applying locks to pouches, satchels, carpet bags, and analogous articles; and it consists in employing two larged sliding clamps, and in providing the adjacent end of each with a corresponding eye through both of which the padlock is passed and then locked. It also consists in an apertured plate sliding in a recess on top of a plate to hold firmly the name, address or destination of the owner of the pouch, satchel or carpet bag. Improved Sewing Machine. George Webster, Jr., and John Fraser Webster, Hamilton City, Province of Ontario, Canada.—This invention consists in a new mode of applying the feed bar mechanism; in a peculiar relative construction of the shuttle carrier and feed bar to enable the former to raise the latter at every forward motion; and in a very simple and convenient mode of regulating the length of stiles. Improved Fence. Austin Orvis, Ellington, Iowa.—The invention relates to that class of fences which are placed across streams liable to be flooded with water at one season of the year and obstructed with ice at another. The invention consists in a jointed post which will enable the panel to stand erect in the graring season, and to be thrown down with its top up the stream in the season of the Improved Cement. Dr. John E. Park, Sequin, Texas.—This invention relates to a new hydrau, lic cement, and to a process of burning the same to develope its highest commentitious qualities. The cement is composed of 1 part lime with 30 to 43 per cent of clay (alumina and silica), and 5 to 10 of fine s.nd (silex), and 5 per cent of soda (carbonste, marrate or caustic), or potash. The principal feature of the process is determining the degree of calcination by means of the color of the material at various stages of the burning; and without the exact degree of calcination, thus determined, the cement will not be of the required quality. Improved Steam Engine Valve. Alexander Bauman, London, Engiand.—This invention consists in cutting off the steam from the main cylinder before its piston has reached its throw by detached leading valves, one at each end of the main cylinder and an intermediate one, all moved by the pressure of the steam that fills the main cylinder at or near the completion of each stroke. The piston valves cut off the exhaust of the main cylinder before the end of each stroke, thereby orming therein a steam cushion which checks the momentum of the main piston and receives it with a yielding resistance like a spring, thus making high speeds much safer. It is also economical, because the steam cushion stores up power which is exerted in the reaction to send the piston back. Clevis Bar, Hook, Whiffletree, and Whiffletree Staple. Robert Gibbs, Spring Hill, Mo.—This invention consists, first, in a peculiar mode of constructing and combining the clevis bar with its brace; second, in a peculiar construction of double hook for clevis bars or whiffletrees third, in a novel mode of swiveling the shank of a cievis hook in the clevis bar and combining it with a laterally adjustable front plate; fourth, in a new way of applying a hook staple to a swingle tree in connection with a restorated late. Improved Turpentine Scraper, John G. Cobe, Shoe Heel, N. C.—This invention relates to turpentine scrapers which are used to detach the resinous substance that exudes from the tree, and consists in a double edged reversible scraper. This obviates entirely the employment of two implements to complete the operation. Improved Carringe Protector. George Bruce Brown, Newburgh, N. T.—This invention consists in a plate provided with a subjacent and projecting strip of rubber applied in the rear of a carriage wheel and strached to the earriage spring by a curved arm and Improved Sleigh and Sled Runner. ts of a single rod of metal Improved Wash Boiler. wer on top and provided with adjacent channel ways, the latter receiving the water from the former and delivering it to the steam generating chamber; also in a two part end-closed and side-perforated plac, through which the hot water is forced in jets upon the clothes; and also in a perforated clothes shell that fits over the pipes of the false bottom. Improved Belt Hook. Greenlesf Wilson, P. O. Box 1180, Lowell, Mass.—These hooks act on the same principle as pegging on the sole of a boot, the teeth taking the place of pegs. The belt is not weakened by punching holes; and, the teeth taking hold in so many places, the strain comes uniformly on the ends of the belt, which prevents tearing out the ends. The hook is particularly adapted for rubber belts. The inventor manufactures different stees and supplies them by the quantity, at low rates. Improved Machine for Cutting Hoop Locks Improved School Desk. John Wallace Childs, Kansas City, Mo.—The invention consists in a penuliar mode of constructing the hinge joint of desk lids, and analogous articles, so that the desk lid is easily held by gravity in an inclined position for use, and lifted before it is allowed to fold against the back. for use, and lifted before it is allowed to fold against the back. Improved Cartain Cord Fastener. Charles Gammel, Utlea, N. Y.—This invention has for its object to furnish an improved pulley for the cords of window shade rollers. A piste, designed to be secured to the window casing, is east with a socket or hollow rith to receive a rod. The upper end or head of the rod is slotted to receive a pulley, around which is passed the endless cord by which the shade is raised and lowered. The rod is made considerably longer than the length of the plate, and has a hand nut screwed upon its lower end, so that, by simply turning the nut on or off, the tension of the shade cord may be adjusted as required. In the side of the rod is formed a groove, into which is inserted a pin so as to be entirely out of sight. Improved Sofa. Villiam R. Conger, Newark, N. J.—The invention consists in the improvement of sefa bedsteads. The back is hinged to the frame of the seat, so that it will turn over and hang down. In this manner the lounge may be used as a double lounge whenever such use of it is desired. The back may also be fastened in an inclined position. To the front side of the lounge is attached an adjustable side or shield. When the lounge is in ordinary use, the shield is dropped down in front so as to be entirely out of the way. When it is desired to use the lounge as a bed, the front is turned up and fastened in any desired position. The head may be raised and adjusted to suit the occupant of the lounge. Improved Telegraph Cut-out and Switch. Henning, Ottawa, Ill., assignor to himself and J. D. Cate Bobert Henning, Ottawa, Ill., assignor to nimself and J. D. Caton, of same place.—The object of this invention is to substitute, for the different separate instruments used at present in telegraph offices as cut-outs and ground switches, a combination instrument which not only offers all the advantages of the former, out, by its simple construction, is clearly understood, early operated, and furnished at less expense. The invention consists, mainly, in the combination of a cut-out and ground switch by means of two parallel metallic plates, connected with the line and local wires, which connection may be interrupted or established by the adjustable button or circuit closer and a metallic peg, which may connect either wire, or both, to the ground. Improved Copy Holder. Stephen French and Rufus D. Chase, Orange, Mass.—The invention consists of a board, supported in any way in an oblique position suitably for reading "copy." Near its upper edge is a pair of rolls with clastic surfaces arranged suitably for drawing a half sheet of paper along the table from bottom to top, one of said rollers being provided with a thumb bit at one or both ends for turning it. Just below the rollers is a slotted plate, arranged so that the paper, containing the matter to be copied, will be drawn under it and hidden from viow, except a line or two which may be seen through the slot, and thereby be clearly indicated to the eye of the copyist, so that no time will be lost in following the copy in the right connection. Improved Shank Laster. Richard B. Perkins, Almond, N. Y.—The object of this invention is to construct a shank laster, which may be adjusted to different sizes of boots, holding the shanks firmly, and allowing the use of both hands in perging. The invention consists of a curved main piece, with piuchers, guard, and regulator pivoted to the end thereof. The curved lever is placed under the knee, the pressure on guard and pinchers stretching firmly the shank leath- Improved Cooking Vessel. Laurence P. Bodkin and John S. Bodkin, Brookiyn, N. Y.—This invention has for its object to improve the construction of bollers, sauce pans, and other cooking vessels, in such a way that the liquid contents may be poured off and the solid contents retained. Upon the edge of the forward side of the boller is formed a lip, inclining upward and outward, to serve as a spout in pouring out the liquid contents of said boiler, to guide them into the receiving vessel and prevent them from trickling down the outer side of boiler. Upon the inner side of the edge of the forward side of the boiler is formed a grate, the bars of which are connected with each other at their inner ends, and at their outer ends are formed solid with the body of the vessel. The bars of the grate are made triangular in form, and are so
arranged as to form the least possible obstruction to the outflowing liquid. Inurroyed Ruilrond Switch. Improved Railroad Switch. Improved Railrond Switch. John R. Adams, Sacramento, Cal.—The object of this invention is to construct a switch connection which avoids the disadvantages resulting from the expansion and contraction of the switch rail at different temperatures, causing either a too close contact, so as to prevent the working of the rail, or a too wide opening, so that the battering of the ends of the rails necessitates their replacement. The lavention consists in the arrangement of an inverted rail under the switch rail, connected and pivoted to it at one end, and the extension of the lower inverted rail under a rest plate to the track rails, to which the same is also rigidly connected, producing an expansion and contraction in such a manner that the switch rail is always equidistant from the track rails, and no interruption of the working of the switch or buttering of the rails is possible. Improved Raiding Redstand Improved Folding Bedstead. Alfred G. Bayles and John W. H. Carroll, New York city, and George D. Miner, Williamsburgh, N.Y.—This invention has for its object to improve the construction of the folding bed described in letters patent No. 183,187, issued to the said Alfred G. Sayles, November 19, 1872, so as to make it simpler in construction, and make it more nearly resemble a table or other similar article of furniture. The invention consists in an improved folding bed, formed of the two parts hinged to each other. One part has a molding around its top so that when the said part of the bed body is turned back the molding may swing out and serve as legs to support the weight, the cress bar of the molding supporting the weight, the hinges being simply intended to pivot the molding in place. The spaces in which the parts of the mattress rest are made of such a depth that the edges of three of the sides of the parts of the body of the bed may project sufficiently above the mattress to give space for the bed clothes. An end board is fitted into the open space formed by recessing the adjacent edges of the hinged sides of the parts ien the bed is closed, so as to closely cover said opening. The edge of disks, a part of the body opposite the hinges may be provided with a board, tect titleb, when the bed is closed, overlaps the other part and, when the bed is ned, serves as a head board to the bed. Improved Feed Water Heater for Steam Bollers Improved Peec Water Heater for Steam Bollers. Sidney T. Taylor, Baltimore, Md.—This invention consists in a new arrangement of a cone and induction and eduction exhaust-steam pipes or tubes, with a perforated circular water discharge pipe, within a case or cylinder, whereby a very thorough absorption of heat by the water, and correspording condensation of the steam, is assured. It also consists in providing a well at the bottom of the aforesaid case and arranging a piston of the steam, is assured. nd valve therein, so that the water accumulating in the case may be entire Improved Sash Cord Guide William Shaw, Brooklyn, N. Y.—The case has flat surfaces in which is ournaled the rod or pulley shaft, and the rollers or pulleys have end cham-ers combined with sets of loose balls placed in said end chambers, so as to Milliam D. Brooks, Baltimore, MA ayo'ding the necessity of changing the circle of blow p in the size of cans to be saidered, and consists in a nove of attaching the burner pipes to their supply chamber Improved Butter Worker, Warren N. Golden, Coldwater, Mich.—This invention consists in butter workers having predicts with peculiarly shaped end curve and flat surface; and in the combination with two butter workers and one butter holder of a circular rack and pinions, arranged so that all the former may be simultaneously operated from a single crank arm. Improved Harvester. Wm. K. Ikairigh, Pjumville, Pa.—This invention consists in making the shall that drives the cutter platons in three sections, easily applicable to and removable from each other, and in making the sect to slide back and forward at the will of the driver. Improved Veneer Cutting Machine. John W. Leslie and George R. Smith, Cairo, III.—This invention consists in the employment o. a pressure roller so small that the curvature of the periphery will admit of the application of the pressure exactly opposite the edge of the cutter, with two secondary pressure rollers acting upon it to make up the capacity for pressure, in which it is considerably reduced by being made so small. The object is to bessen the checking of the wood, which is considerable in the machines using only one roller, because the size necessary for strength makes the curvature so large that the point of contact with the wood must be considerably in front of the cutting edge. Improved Expansion Softee Improved Extension Settee. Improved Extension Settee. Cornellus Beatty, Elizabeth, N. J.—The object of this invention is to so construct settees or "lounges" that they may be readily converted into beds for sleeping purposes; and it consists in the mode of extending the settee by sectional extension side pieces hinged thereto and provided with legs, the same being so constructed and arranged as to be folded back around the settee and fastened together. Improved Sewing Machine. Cyrus Lewis and Joseph Soothill, Howard, Ill.—The tovention consists in means for facilitating the application of glass to hearing surfaces. The vertical wall of the shuttle race and the bottom are of glass. The glass race is supported by a metal plate to which it is fastened by detachable clips at the ends. A groove or a slot is made in the part for the needle, a he glass race is bedded thereon, on its metal supports, in coment, shellar, or other clastic substance calculated to back it throughout, take up the shack, and overest fracture. Frank A. Markley, Waynesborough, Va.—The object of this invention is improvement in the class of shells or explosive projectiles which are formed of several detachable parts; and the improvement consists in the construction of the projectile whereby the several auxiliary shells or chambers are connected to the main cylinder. On the ignition of the fuse connection, the pow or charge in the main chamber explodes and throws the quarter shells in different directions. The fuse of each shell will take fire from the first explosion and ignite the powder charges of the auxiliary shells, scattering their fragments again with powerful effect. tering their fragments again with powerful effect. Improved Water Wheel. Alisha B. Reniff, Bingham's Mills, N. Y.—This invention has for its object to furnish an improved water wheel. Around the body of the wheel is formed the inner rim. The inner edges of the buckets are secured to this inner rim, and to their outer edges is secured an outer rim. The buckets are so arranged that their upper edges are about upon a tangent with the rear side of the shaft. They also incline to the rearward, and their inner side edges pass to the rearward faster than their outer side edges, and are made longer, so that their bottom edges may be horizontal. The inner rim is made deeper than the outer rim which, in connection with the form of buckets, causes the wheel to discharge freely. The wheel when at work in connection with the spent water causes a suction, which renders the use of a suction pipe wholly unnecessary. The size of the buckets and their number may be varied according as more or less power is required. The body of the scroll or stationary wheel is made convex upon its upper side and horizontal upon its lower side. The lower edges of the chutes are arranged about upon a tangent with the forward side of the shaft, and are inclined in the opposite direction from the buckets. This construction of the stationary wheel allows the water to pass readily and freely into the chutes, and enables the wheel to be run effectively with a very low head of water. Improved Wheel Cultivater. John H. Randolph, Jr., Bayou Goula, La.—The invention consists in the improvement of cultivators. The tongue of the machine is attached to the cross bars of the horizontal frame and strengthened by inclined braces. To the near cross bar of the frame are attached a pair of vertical standards, placed at such a distance apart as to receive one of the drive wheels between them. The drive wheels are placed upon shafts and carry the same with them in their revolution. The shafts revolve in bearings, while their inner ends project through keepers on long bearings attached to a standard, so that the latter may be raised and lowered without disturbing the shafts. Upon the foreward edge of the standards are rack teeth into which gear the teeth of a segmental toothed wheel, the hubs of which are placed upon shafts to which are rigidly attached the lower ends of the levers. Flows or scrapers are attached to the lower ends of the standards, and are so formed as to move the soil laward or toward the plants. By means of biades actuated by radial arms suitably arranged, the soil is thrown toward the plants, said blades operating upon the soil somewhat as the blades of a propeller screw operate upon the water. The blades may be used in connection with the plows, or either may be used without the other, and both may be adjusted to work at any desired depth in the soil. Improved Swaging Machine. Improved Swaging Machine. Henry M. Crippen, Bartlett, assignor of one half his right to James C. Wilson, Plymouth, Ohio.—The object of this invention is to furnish a machine for the use of carriage smiths and metal workers generally, by means of which the time and labor required for forging the various light froms required in the prosecution of their business may be greatly diminished and the work performed in a superior manner. The bed plate of the machine is clevated on an iron frame and supports a stand. Vertical rods are held in the jaws of this
stand, upon which are spiral springs. The bar which carries the upper awages rests upon the top of the spiral springs. The down action is produced by means of a treadle. The back or upward motion is produced by the recoil of the spiral springs. The die plate has on its face grooves which correspond with the grooves in the faces of the hammer dies, and is moved and adjusted on the bed laterally to suit the operator, and may be secured in any desired position. and may be secured in any desired position Improved Paddle Wheel. James C. Chaffee, Titusville, Pa.—The shaft is connected with the driving power by cranks to which are attached habs made with pairs of parallel flanges to receive the inner ends of the paddles. To said ends are secured the paddles bent in the n iddle, flanged on their outer ends, and bolted to the paddies bent in the reduce, sanged on their outer ends, and bolted to disks. Upon the outer edges of the disks are formed flaring rims to protect the buckets from obstructions in the water. This construction, the paddles being set opposite to each other, makes the boat more steady and renders the wheels less liable to clog than wheels constructed in the ordi- Improved Harvester. Wm. K. Rairigh, Pionwille, Pa.—This invention consists in combining an adjustable real with a set of pulleys and cords so that the said cords and belts will always be automatically tightened or loosened whenever the real is changed; in a pivoted reciprocating rake that is held upright on the off-stroke but tipped over by a spring ready for the on-atroke; in a wire framegatherer attached to a detachable guide frame; and smally, in operation the cake by a shaft having two reversed and crossing solral slots. ting the rake by a shaft having two reversed and crossing spiral slots. ALL new subscriptions to the Scientific American will be commenced with the number issued in the week the names are received at this office, unless back numbers are ordered. All the numbers back to January 1st may be had, and subscriptions entered from that date if desired. # Business and Personal. Wanted, Brick Mach. Circulars, Box 5501, N.Y Belting-Best Philadelphia Oak Tanned W. Arny, 301 and 301 Cherry Street, Philadelphia, Pa. 2, W. Arny, 201 and 203 Cherry Street, Philadelphia, Pa.' Brooks' Steam Clothes Washer—1000 acents vanted. Profits large. Sales immense. Send for circust. Wm. R. Brooks, Phelps, N. Y. Diamond Carbon, of all sizes and shapes, for ritiliar rock, sawing stone, and turning emery wheels; lso Glazier's Diamonds. J. Dickinson, 64 Nassau St., N. Y. Buy Belting and Mechanical Supplies of First class 2 H. P. Engine and Boiler, new, r \$300 cash, if bought immediately. G. F. Shedd, Waltham, Mass. Spons' Catalogue of Scientific Books, mailed free oa splication. E. & F. N.Spon, 448 Broome St., N.Y. Patent Office Report for Sale—Complete, Address L.H. Trook, 638 Va. Ave. W., Washington City, D.C. Wanted—A Portable or Stationary Steam Engine (new or second hand), from 20 to 30 H.P. W. & J. Reid, West Hebron, N. Y. Bny Gear's Improved Variety Moulding Ma- chine, Boston, Mass.* Patent for Sale at a great inducement. Apply, for particulars, to Fatentee of "Advertising Lantern," S. Kuh, Jefferson, Iowa. Machinery for Sale—For particulars, address—The Abbott M'f'g Co., Seneca Falls, N. Y. Patent for Sale of an article needed by Book Keepers. Address W. F. West, Haverstraw, N. Y. S. R. Wells, Publisher, 389 Broadway, New York, gives "Pleasant and Profitable Employment" to such as wish to "earn a dollar or two," while about their regular work. Try it. Washing Machine—Best, \$3.50. Easy work. regular work. Try it. Washing Machine—Best, \$3.50. Easy work, Circularsfree, J..., Dugdale, Whitewater, Wayne co., Ind. Stationary Engines; Double and Single Circular Saw Mills; Fortable Farm Engines mounted on trucks with Iron Water Tank, Steam Jacketed Cylinder and Balance Steam Valve, the only Portable Engine made with Steam Jacketed Cylinder and Balance Steam Valve. Send for Descriptive Circular and Prica List to the Mansfield Machine Works, Mansfield, Ohio. Liberal discount to agents. discount to agents. Portable Steam Engines for PlantationMining, Mill work, &c. Circular Saw Mills complete for business. First class work. Simple, Strong, Guaranteed. Best Terms. Address the Old Reliable John Cooper Engine Mfg. Co., Mt. Vernon, O. gine Mg. Co., Mt. Vernon, O. Iron Castings Direct from the Ore Wanted, send name and address to Castings, Box 2913, New York. Nickel and its Uses for Plating, with geneal description. Price 20c. a copy, mailed free, by L. & J. W. Feuchtwanger, 25 Cedar St., New York. Improved Wood Handle Ratchets, 18 in., \$5. E. Parker MTg., 117 & 119 Malberry st., Newark, N. J. For Solid Emery Wheels and Machinery, send to the Union Stone Co., Boston, Mass., for circular. State and County Rights for Duryca's patient Refrigerator, the best in the world; or will exchange for Real Estate. Apply at 693 Seventh avenue. Sure cure for Slipping Belts—Sutton's patient Pulley Cover 18 warranted to do double the work before the belt will slip. Circulars free. John W. Sutton, 6 Liberty Street, Boom 2, New York. Patent Chemical Metallic Paint—All shades, Patent Chemical Metallic Paint—All shades, round in oil, and all mixed ready for use. Put up in ans, barrels and half barrels. Price 50c., \$1 and \$1,50 per al. Send for eard of colors. N. Y. City Oil Co., Sole gents, 116 Maiden Lane, New York. Cabinet Makers' Machinery, T.R.Bailey&Vail, Steam Boller and Pipe Covering—Economy, safety, and Durability. Saves from ten to twenty per cent. Chalmers Spence Company, foot East 9th St., New York—133 N. 28 St., St. Louis, Mo. Shortt's Patent Couplings, Pulleys, Hangers and Shafting a Specialty. Orders promptly filled. Circulars free. Address Shortt Mf'g Co., C rthage, N.Y. Stave & Shingle Machinery, T.R.Bailey & Vail. The Best Smutter and Separator Combined a America. Address M. Deal & Co., Bucyrus, Ohio. Damper Regulators and Gage Cocks—For the best, address Murrill & Keizer, Baltimore, Md. The Berryman Heater and Regulator for cam Bollers—No one using Steam Bollers can afford to without them. L. B. Davis & Co. Brown's Coalyard Quarry & Contractors' Ap-scrains for holsting and conveying material by iron cable, V.D. Andrews & Bro. 414 Waterst. N. Y. All Fruit-can Tools, Ferracute, Bridgeton, N.J. The Berryman Manuf. Co. make a specialty the economy and safety in working Steam Bollers. I. Davis & Co., Hartford, Conn. Grain, Paint, Ink, Spice and Drug Mills. Key Seat Cutting Machine.T.R.Bailey & Vail. Cheap Wood-Working Machinery. Address M.S. Cochran & Co., Pittsburgh, Pa. Peck's Patent Drop Press. For circulars, address Milo, Peck & Co., New Haven, Conn. Steam Fire Engines.R.J.Gould, Newark, N.J. Spur and Bevel Wheels and Spindles, of eat derability, eset to order by Pittsburgh Steel Cast-c Co. All work warranted. Mining, Wrecking, Pumping, Drainage, or imgang Machinery, for sale orrent. See advertisement, andrew's Patent, inside page. Machinists—Price List of small Tools free; Machinists—Price List of small Tools free; Gear Wheels for Models, Price List free; Chucks and Drills, Price List free. Goodnow & Wightman, M Cornbill, Boston, Mass. Steam Trap excels all others. For best Presses, Dies and Fruit Can Tools, miss & Williams, cor. of Plymouth & Jay, Brooklyn, N.Y. Cevering for Bollers and Pipes. The most economical and durable article in use. Took first prize at American Institute Fair. Van Tayl Manufacturing Company, 025 Water Street, New York. For Solid Warneth is well. Parties desiring Steam Machinery for quarrying stone, address Steam Stone Cutter Co., Rutland, Vt. Hand Fire Engines, Price \$200 to \$2,000. Also, over 800 different Style Pumps for Tanners, Paper ullis, and Fire Purposes. Address Rumsey & Co., Seacea Falls, N. Y. U. S. A. B. F. J. asks: What is the striking power of the largest hammer used in Burden's horseshoe works; also of the largest one in use anywhere else? (Perhaps some of our readers who have seen the hammer mentioned will forward some information on the subject. The largest hammer in the world is supposed to be the 100 tun hammer at Krupp's steel works in W. B. asks for a recipe for cement which can be applied around the joint of a tin box, which will keep oil from coming out during transportation. When the box and contents reach the destination, the cement a to be removed. "I do not wish to solder the coveron, but merely to keep the oil from oozing out." but merely to keep the oil from oozing out." J. N. H. asks: Will a turbine wheel give as good results for power as an overshot, the amount of water being from 100 to 300 inches in volume, and the fall 20 feet? Both wheels are proportioned to that amount. A man was desirous of putting in a turbine wheel: but a millwright said it would do well enough in the spring for a month or two when water was plentiful, but in low water it would not do the work that an overshot would. [The question proposed by our correspondent is one of great interest, and we would be glad to hear from those of our readers who have information on the matter. Some turbine wheels have given an efficiency of more than 35 per cent, but there is generally a great falling off at "part gate." R. will find full directions for kalsomining on p. 350, vol. 24.—J. C. S. will find a rule by which he can obtain the required width of belt on p. 257, vol. 28. B. W. F. asks (1) for a recipe for making Pharaoh's serpents". 2. How are a number of clocks-ept regulated by means of galvanic connections? 3. fow can I make a cheap electric alarm bell? I have atteries and an electro magnet. Answers: 1. See an- Your the mass into water and work into balls, which are fed up in smooth worn silk and applied to the plate warm, when it oozes through the silk. A dauber of soft wool covered with silk is used to smooth it perfectly. A Lady asks if camphor put up with furs auses them to tade. Answer: Persons who have used amphor for a long
time do not notice any change of olor, even where the gum is in direct contact with the for. W. A. S. says: Herewith enclosed please and a section of lead pipe, cut from a piece eleven feet long; the whole length is perforated like the sample sent. We are somewhat puzzled as to the cause of decay. The pipe was put down, six feet below the surface of the ground, nine years ago, as a conductor of pure water from the main pipe into a building. The soil is dry, sandy and pebbly. Attention was first called to it by the leakage, through the stoppage of water in the building. Belleving that it would be interesting and instructive, we ask your opinion. Answer: The specimen appears to have been gnawed by some animal, but it may have been corroded by some mineral acid in the soil, which attacked the lead. Such cases are not common. W. H. P. says: I have been using the following arrangement for over a month, and I find it to terpass anything of the kind in use. The object is to pump water into a bolier without diminishing or stoppling the making of steam. Set the check valve on the center of the boller, thence run a pipe (inside the boller) to the front end, chow it and run it to the back end, and to within an inch of the bottom; so that, as a natural consequence, by the time the water passes through that length of pipe in the steam, it will be as hot as it would be when it geta to the water in the boller. Please give me your opinion. Answer: If the water is heated rangement, while it is efficient, may not be economical. J. B. F. asks: What is the most suitable engine for driving a street car, that is, the one that would do the work with the least steam? What is the weight of the engine and the amount of steam required to run one of the dummies now in use? Answer: It would require too much space to answer our correspondent's inquiries in full. By consulting back numbers of our paper he will gain considerable information on the subject. Opinions differ as to the best form of engine for street cars. We have seen an account of a steam car containing an engine of 5 horse power, and consuming coal at the rate of one tun every thousand miles of continuous run. D. C. carres. A low processing engine has a miles of continuous run. D. C. says: A low pressure engine has a condenser, and I notice that it does not carry so much steam as a high pressure; what is the reason? If I were to put a condenser on a high pressure engine, would it be called a low pressure or a condensing engine? Answer: In common parlance, a low pressure engine is one that has a condenser, and a high pressure engine exhausts into the air. Modern condensing engines frequently carry as high pressures as non-condensing engines; and the names condensing and non-condensing are the most appropriate. A condenser and air pump can be attached to any non-condensing engine, and it then becomes what is commonly known as a low pressure engine. In this case, the initial pressure of the steam can be reduced—or the valve may be altered so as to cut off the steam at an earlier point of the stroke; and the engine will then develope the same power as before. Y. M. says: 1. With a cylinder 14 inches ore x3 inches stroke and a slide valve, would a shaft inch diameter be stiff enough for the fly wheel an rank, or should it be y inch? 2. The boller is 18 inches ong x 10 inches diameter, and is to have two flues 2) any dentist. F. W. says: I have a stream of water, but no spring for feeding a hydraule ram; and at the point where I want to use the water the fall has little weight, but has a depth of 7 or 9 feet. The river curries in the driest season about 800 cubic feet of water per minute. I propose to fix substantially a cast from pipe to the bottom of the river, as shown in the engraving. The pipe and its supports act as a kind of dam and prevent an admission of water, except from the surface at mouth of pipe at A. This would create a full of \$\fotage\$ feet at high water in the river. The perpendicular part of pipe has a length of the water in the river. The perpendicular part of pipe has a length of 7 feet inside and a diameter of 7 inches gives an area of \$2.64, which, multiplied by 9 feet fall, shows 1,250 gall in sperminute. According to your article about hydraulic rause, the 1,260 gallons falling 9 feet would raise 200 gallons per minute to a hight of 63 feet, or one seventh the quantity descending. Forty per cent of this would be it! gallons. A good deal less would be enough, if a constant stream to a reservoir on top of bank could be had, without further aid or power. Any water engine or the ram can be screwed to the border at B. If the fall of said quantity of water will not create, per se, a rise of water to the hight of 63 feet in smaller streams, which is the best way to effect it? Answer: The pipes would simply fill up and no result would follow in the desired direction. If there is no available permanent fall, no water can be raised, even with the hydraulic ram. J. A. B. savy: I noticed on page 210 of your current volume an article on a large magneto-electric the cylinder 4 toches diameter and 8 inches stroke, with a platon speed of 200 feet per minute. The boiler should have from 60 to 70 square feet of heating aurface; and the steam pressure should be about 70 pounds per square inch. F. C. B. asks: 1. How is the oxide of manganese put in around the carbon plate of a beclanche battery? Is there any other substance with the coke? 2. How can I make attrate of silver? Answers: 1. The A. S. R. neks; 1. If an article placed outside. A kind of sandstone has been commonly employed. F. A. M., naks: What is the cause and preventive of the foaming of the water in my boller? It occurs only when the engine is in motion. The boller is at bhorse power upright: the feed water is very pure well water. When the engine is at rest, I can tell Just where the water is, but when I start it, it the water is at the lower gare, it will often come out at the upper, and if it is at the second gare and near the third gare, it will overflow into the engine for is minutes after it is started. I ran with about 20 lbs. of steam. No matter how soon we try the gages, after the steam is shut off from the engine the water is at rest; but the instant the throttle valve is opened, the upper gage will show water, when before only the lower gage showed it. Answer: Your bolier primes because the atesms space is too small. If you can increase the pressure and keep the throttle valve but partially open, you may remedy the trouble. If, however, the water only "lifts" in the boiler, without being carried over into the cylinder, it does no harm, provided that you are careful to have enough water in the boiler so that, on stopping the engine, the fines will not be uncovered when the water level falls. E. G. S. asks: How can I best conduct E. G. S. asks: How can I best conduct sound through 1,300 feet distance? I have been told that gas tipe is good; if so, what kind and what sized pipe is best? Answer: The ordinary speaking tube, with mouth pieces and whistles, will probably answer your purpose. Any good plumber will fit it up for you. purpose. Any good plumber will fit it up for you. G. F. S. asks: 1. What are the best sized ports for a 4 inches bore steam cylinder? 2. What size in the bearings ought a soild cast from crank shaft to be made to insure samiciant strength for the said cylinder, the bearings being 6 inches apart? 2. Does it cool the water much faster in a boller to pump in at the top of fire box than at the bottom of boiler? Answers: 1 and 2. Sufficient data are not given. The length of stroke, length of posts, steam pressure and number of revolutions would be required to answer the question. 3. Under ordinary cfrountiances, the feed should enter the boiler at a low point. A. S. nsks: 1. What is the cause of our steam pipes splitting, when the condensed steam cannot get out? They will stand the pressure of the steam, we had a two inch tipe split last Saturday, and there have been many of them split through the winter. I do not tinks that it is the frost. 2. What is the best and cheapest way of heating water to feed our boller? We have thought of putting a coil of two inch pipes into the chimney and pumping through them, and we set the pump fow to let the water run into it, but the pump got so hot that it would not work. 3. We have been burning sawdiet in our bollers, and there is a hard crast inside the tabes; it is difficult to get it of. Is it the wet sawdiet that esuses it; and if so, what is the best means of cleaning it off? Answers: 1. The pipe was probably split by the concussion of the water. When steam is admitted into a cold pipe it condenses, and the rush of steam forces the water with great volence against the pipe. Put drain pipes at the lowest points. 2. It is better to force the water through the heater than to draw from the heater. If the exhaust steam from the engine passes is to the chimney, the plan you propose will probably give astisfaction. 2. If the crust cannot conveniently be removed by a straper, it may be located by a fet of steam. This can be readily directed by means of a small rubber tube. J. H. D. asks: 1. If I send you sample of the locate accold yet all new test in the contents. F. L. S. asks; 1. What is the difference be seen tannate of soda and common washing soda? That quantity should I put in a boiler of 2) horse power T. F. D. aska: 1. Will water rise higher than the level of the reservoir from which it is taken, when forced by the pressure of the water through a pipe from the bottom, the end of said pipe being higher than the main level? 2. Which is the proper way to use a reamer on cast from for general purposes, dry or with off? 2. Where are the termind of the first Atlantic cable to this continent? 4. Are visitors allowed to go into the printing offices of any of the daily or weekly papers? C. N. D. says, in reply to B., who said that sulphuric other
would not dissolve rubber: Use chloroform; you will find that it will dissolve readily. MINERALS.-Specimens have been received from the following correspondents, and exam ined with the results stated : H. M. B.-Quite pure red hematite iron ore C. A.-It is filmt. # COMMUNICATIONS RECEIVED. The Editor of the SCIENTIFIC AMERICAN acknowledges, with much pleasure, the re-ceipt of original papers and contributions upon the following subjects: On the Precession of the Equinoxes. By On the Million Dollar Telescope. By R. H. On the Stages of Invention. By S. H. H. On a Coal Dust Burning Furnace. By -On Soap. By F. E. W. On a Fly Destroyer. By J. C. C. On Deep Sea Soundings. By L. de W. and by H. N. C. On Storm Signals. By A. W. On Retrogressive Motion of the Sun. By On Meteors and Meteorites. By D. On Trisection of the Angle. By P. H. Also enquiries from the following: W. S. G. -W. F. -G. S. C. -J. F. -J. H. M. -W. D. -J. B. H. -H. A. W. -J. R. D. -P. Q. L. R. -S. W. E. -S. J. W. -J. S. J. # [OFFICIAL.] # Index of Inventions FOR WHICH Letters Patent of the United States WERE GRANTED FOR THE WEEK ENDING May 20, 1873, AND EACH BEARING THAT DATE. [Those marked (r) are reissued patents.] | Angling fly, J. Mullaly | 129,180 | |--|--| | Anna handle C W Demonstra | 139,006 | | Auger nanore, S. W. nemenway | | | Augers, forming the lips of, J. Swan | 109,091 | | Augers, coupling for earth, T. Uril | 129,072 | | Axie box cover, Moyel & Howell | 189,179 | | Basket form, A. F. Scow | 189,025 | | Bell, door, A. A. Stewart | 139,206 | | Bell ringing, J. Harrison | 139,147 | | Blind slats, entering, J. Church. | 133,013 | | Boller alarm, milk, S. Mangold | | | | 139,012 | | Boller feed, etc., F. A. Fischer. | 1119,135 | | Boller flue thimble, J. C. Farmer | 188,598 | | Boller water alarm, etc., R. Safely | 159,194 | | Boot sole plane, B. J. Tayman | 120,034 | | Boot tip, detachable, M. B. Hawley | 100,065 | | Boots, etc., sample holder for, J. Closs | 133,014 | | | | | Boot, attaching heels, etc., Ellis & Glidden, (r) | 5,413 | | Box lifter, B. H. Smith. | 159,025 | | Box or can for paints, etc., H. Tucker | 139,514 | | Box, packing, D. L. Bartlett | 129,10€ | | Branding apparatus, J. W. Dodge, (r) | 5,420 | | Bricks, repressing, J. K. Caldwell | 100,118 | | Building blocks, forming, A. Derrom | 129,000 | | Building blocks, forming, A. Derrom | | | Building materials, clevating, J. King | 139,16 | | Bureau and ironing table, W. W. Adams | 139,101 | | Bustle, H. H. May, (r) | 5,416 | | Cake entter, J. Webster | 139,317 | | Can, C. A. Murdock Can for oil, etc., metal, G. W. Banker Cane, M. Osborn | 139,181 | | Can for all ste motal C. W. Banbur | 118,980 | | Can for on, etc., metal, G. W. Danaer | | | Cane, M. Osborn | 119,030 | | Car coupling, B. D. Moody | 139,416 | | Car coupling, E. Wiley | 100,221 | | Car, reversible street, W. T. Jenks.
Car starter, G. Felter. | 123,05% | | Car starter, G. Felter | 139,134 | | Cars, brake for coal, D. Wetsel | | | Car p'pe coupling, M. Henszey, Jr | | | | 109,097 | | | 139,150 | | Carpet beater, W. H. Hankinson | 189,150 | | Carpet beater, W. H. Hankinson | 189,150
189,115
189,225 | | Carriage top, G. H. Young. Carriage running gear, Kline & Jack. | 189,150 | | Carriage top, G. H. Young. Carriage running gear, Kline & Jack. | 189,150
189,115
189,225 | | Carriage top, G. H. Young. Carriage running gear, Kline & Jack. | 189,150
189,145
189,225
189,164
189,212 | | Carpet beater, W. H. Hankinson Carriage top, G. H. Young. Carriage running gear, Kline & Jack Caster, J. Toler. Casting scabnard orgaments, V. Price | 189,150
189,145
189,225
189,164
189,212
139,025 | | Carriage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabbard orgaments, V. Price. Centifugal machine, E. J. M. Becker. | 189,150
189,145
189,225
189,164
189,212
189,025
189,108 | | Carpet beater, W. H. Hankinson. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabbard ornaments, V. Price. Centriugal machine, E. J. M. Becker. Chain machine, B. Hersbey. | 189,150
189,145
189,225
189,164
189,212
189,025
189,105
189,105 | | Carpet beater, W. H. Hankinson. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabbard ornaments, V. Price. Centriugal machine, E. J. M. Becker. Chain machine, B. Hersbey. | 189,150
189,145
189,225
189,164
149,212
189,025
189,105
189,151
189,151 | | Carpiage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kiline & Jack. Caster, J. Toter. Casting scabnard oranments, V. Price. Centrifugal machine, E. J. M. Becker. Chain machine, B. Hersbey Chair fan, rocking, O. Brucek. Castr, Illifug, MV. B. Howe, (r) | 189,150
189,145
189,225
189,164
189,212
189,025
189,105
189,105 | | Carpet beater, W. H. Hankinson Carriage top, G. H. Young Carriage running gear, Kiine & Jack Caster, J. Toler Casting scabnard ornaments, V. Price Centrifugal machine, E. J. M. Becker Chain machine, B. Hersbey Chair, tilting, M. V. B. Howe, (r) Chandeller, J. Kintz. | 189,150
189,145
189,225
189,164
149,212
189,025
189,105
189,151
189,151 | | Carpet beater, W. H. Hankinson Carriage top, G. H. Young Carriage running gear, Kiine & Jack Caster, J. Toler Casting scabnard ornaments, V. Price Centrifugal machine, E. J. M. Becker Chain machine, B. Hersbey Chair, tilting, M. V. B. Howe, (r) Chandeller, J. Kintz. | 189,150
189,145
189,225
189,164
149,212
189,025
189,108
179,151
189,117
5,419
189,066 | | Carpet beater, W. H. Hankinson. Carriage top, G. H. Young. Carriage running gear, Kiline & Jack. Caster, J. Toler. Casting scabnard ornaments, V. Price. Centrifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Chair, tilifug, M. V. B. Howe, (r) Chandeller, J. Kintz. Chung cowl, J. H. Richardson. | 189,150
189,145
189,225
189,264
189,212
189,025
189,108
189,151
189,117
5,419
189,060
189,080 | | Carpiage tops, G. H. Young Carriage top, G. H. Young Carriage running gear, Kline & Jack Caster, J. Toter. Casting scabnard oranments, V. Price Centrifugal machine, E. J. M. Becker Chain machine, B. Herabey. Chair fan, rocking, O. Brucek Chair, tilifug, MV. B. Howe,
(r) Chamdeller, J. Kintz. Chimney cowi, J. H. Richardson Chimney and freplace, J. Briggs | 189,150
189,145
189,225
189,164
149,212
189,025
189,108
189,151
189,151
5,419
189,066
189,081
189,111 | | Carpiage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabhard orgaments, V. Price. Ceatifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair, tillfing, M. V. B. Howe, (r). Chair, tillfing, M. V. B. Howe, (r). Chandeller, J. Kintz. Chunney sowi, J. B. Eichardson. Chimney as I fireplace, J. Briggs. Churn motor, J. B. Seectland. | 189,150
189,145
189,225
189,164
1,69,212
189,025
189,105
189,151
189,151
189,066
139,08
139,111
129,206 | | Carpet beater, W. H. Hankinson Carriage top, G. H. Young Carriage running gear, Kiine & Jack Caster, J. Toler Casting scabnard ornaments, V. Price Centrifugal machine, E. J. M. Becker Chain machine, B. Herabey Chair fan, rocking, O. Brucek Chair, tilting, M. V. B. Howe, (r) Chandelier, J. Kintz. Chimney cowi, J. H. Richardson Chimney an I fireplace, J. Briggs Churn motor, J. B. Secetland Cigar trimmer, A. Hettinger | 189,150
189,145
189,225
189,164
1,89,212
189,023
189,108
189,151
189,151
189,168
189,111
189,268
189,111
189,268
189,111
189,268
189,115 | | Carpiage top, G. H. Young Carriage top, G. H. Young Carriage running gear, Kline & Jack Caster, J. Toter. Casting scabnard oranments, V. Price Centrifugal machine, E. J. M. Becker Chain machine, B. Herabey. Chair fan, rocking, O. Brucek Castr, tilting, M. V. B. Howe, (r) Chamdeller, J. Kintz. Chimney cowi, J. H. Richardson Chimney an I freplace, J. Briggs Churn motor, J. B. Secetland Cigar trimmer, A. Hettinger Clay, pulverizing, G. C. Bovey. | 189,150
189,145
189,225
189,164
1.89,212
139,023
189,108
189,151
189,117
5,419
5,419
189,080
139,080
139,288
139,111
109,288
109,152
189,110 | | Carpiage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabhard ornaments, V. Price. Ceatifuggal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Cair, filling, M. V. B. Howe, (r). Chandeller, J. Kintz. Chunney cowl, J. H. Richardson. Channey an I fireplace, J. Briggs. Churn motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulverizing, G. C. Bovey. Clock striking works, Leeds & Thorne. | 119,150
129,115
119,225
120,164
1.89,212
129,025
129,115
129,115
5,415
129,066
139,08
139,111
129,208
139,115
129,108
139,116
109,166 | | Carpiage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kiline & Jack. Caster, J. Toter. Casting scabnard ornaments, V. Price. Centrifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brusck. Chair, tilting, M. V. B. Howe, (r) Chandelier, J. Kintz. Chimney cowi, J. H. Richardson. Chimney an I fireplace, J. Briggs. Churs motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulverizing, G. C. Bovey. Clock strikting works, Leeds & Thorpe. Cloth, stretching and drying, W. Balley. | 189,150
189,145
189,225
189,164
1.89,212
139,023
189,108
189,151
189,117
5,419
5,419
189,080
139,080
139,288
139,111
109,288
109,152
189,110 | | Carpiage top, G. H. Young Carriage top, G. H. Young Carriage rouning gear, Kline & Jack Caster, J. Toter. Casting scabnard ornaments, V. Price Centriugal machine, E. J. M. Becker Chair machine, B. Herabey. Chair fan, rocking, O. Brucek Caster, Hiffing, M. V. B. Howe, (r) Chamdeller, J. Kintz. Chimney cowi, J. H. Richardson Chimney an I freplace, J. Briggs Chura motor, J. B. Secetland Cigar trimmer, A. Hettinger Clay, pulverizing, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloth, stretching and drying, W. Balley Clothes line puller, G. H. Byer. | 119,150
129,115
119,225
120,164
1.89,212
129,025
129,115
129,115
5,415
129,066
139,08
139,111
129,208
139,115
129,108
139,116
109,166 | | Carpiage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabhard ornaments, V. Price. Ceatifuggal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Cair, filling, M. V. B. Howe, (r). Chandeller, J. Kintz. Chunney cowl, J. H. Richardson. Channey an I fireplace, J. Briggs. Churn motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulverizing, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloth, stretching and drying, W. Balley. Clothes line puller, G. H. Byer. Clothes oressing machine, H. E. Swith. | 119,150
119,145
119,225
119,164
1.09,215
119,108
179,115
5,419
189,08
139,211
129,208
139,111
129,208
139,110
139,16
139,16
139,08
139,08
139,16
139,08
139,08
139,16
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
139,08
13 | | Carpiage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kiline & Jack. Caster, J. Toler. Casting scabnard ornaments, V. Price. Ceatrifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Chair, tillring, M. V. B. Howe, (r) Chandeller, J. Kintz. Chianney an I fireplace, J. Briggs. Chair motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulverizing, G. C. Bovey. Clothe, stricting works, Leeds & Thorpe. Clothe, stretching and drying, W. Balley. Clothes line pulley, G. H. Byer. Clothes pressing machine, H. E. Smith. Clothes winger, H. E. Smith. |
189,150
189,115
189,225
189,225
189,025
189,105
189,105
189,117
5,417
189,066
189,286
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,110
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,100
189,1 | | Carpiage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kiline & Jack. Caster, J. Toler. Casting scabnard ornaments, V. Price. Ceatrifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Chair, tillring, M. V. B. Howe, (r) Chandeller, J. Kintz. Chianney an I fireplace, J. Briggs. Chair motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulverizing, G. C. Bovey. Clothe, stricting works, Leeds & Thorpe. Clothe, stretching and drying, W. Balley. Clothes line pulley, G. H. Byer. Clothes pressing machine, H. E. Smith. Clothes winger, H. E. Smith. | 119,150
119,115
119,225
119,164
149,212
139,023
119,105
119,115
119,066
139,08
119,111
129,266
139,116
119,166
119,166
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066
119,066 | | Carpiage top, G. H. Young Carriage top, G. H. Young Carriage running gear, Kline & Jack Caster, J. Toter. Casting scabnard ornaments, V. Price Centrifugal machine, E. J. M. Becker Chair machine, B. Herabey. Chair fan, rocking, O. Brucek Caster, J. Kintz. Chimney cowi, J. H. Richardson Chimney and freplace, J. Briggs Churn motor, J. B. Secetland Cigar trimmer, A. Hettinger Clay, pulverizing, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloth, stretching and drying, W. Balley Clothes line pulley, G. H. Byer. Clothes pressing machine, H. E. Smith. Clothes wringer, H. E. Smith. | 119,150
119,115
119,225
129,164
149,212
139,023
119,105
119,105
119,111
129,206
139,081
139,081
139,161
139,068
119,164
139,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068
119,068 | | Carriage top, G. H. Young Carriage top, G. H. Young Carriage running gear, Kiine & Jack Caster, J. Toler. Casting scabbard ornaments, V. Price Centifugal machine, E. J. M. Becker Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek Cast, tiliting, M. V. B. Howe, (r) Chandeller, J. Kintz. Chunney cowi, J. H. Richardson. Chimney and fireplace, J. Briggs Churn motor, J. B. Secetland Cigar trimmer, A. Hettinger. Clay, pulvetring, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloth, stretching and drying, W. Bailey. Clothes line puller, G. H. Hyer. Clothes pressing machine, H. E. Smith. Clothes wribger, H. E. Smith. Clothes wribger, H. E. Smith. Clothe, friction, E. Allen. Conving press, letter, G. C. Taft. (r). | 119,150
119,125
119,264
149,212
139,025
139,105
139,117
5,419
119,117
5,419
119,066
139,081
139,111
139,111
139,111
139,111
139,113
139,120
139,081
139,081
139,120
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081
139,081 | | Carriage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabhard ornaments, V. Price. Ceasting scabhard ornaments, V. Price. Ceasting scabhard ornaments, V. Price. Ceatifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Clair, tilting, M. V. B. Howe, (r). Chandeller, J. Kintz. Chunney cowl. J. H. Richardson. Channey an I fireplace, J. Briggs. Churn motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulverizing, G. C. Bovey. Clock striking works, Leeds & Thorpe. Clothe, stretching and drying, W. Balley. Clothes pressing machine, H. E. Smith. Clothes wringer, H. E. Smith. Clothes wringer, H. E. Smith. Clothe, friction, E. Allen. Copying press, letter, G. C. Taft, (r). Cornice, stucco, A. Derrom. | 189,150 189,151 189,252 189,164 1,69,212 189,025 189,151 189,151 189,152 5,419 189,080 189,111 189,266 189,166 189,166 189,166 189,688 189,170 189,166 189,688 189,170 189,166 189,167 189,168 189,170 189,166 189,167 189,168 189,170 189,168 189,170 | | Carpiage top, G. H. Young Carriage top, G. H. Young Carriage running gear, Kilne & Jack Caster, J. Toter. Casting scabnard oranments, V. Price Centrifugal machine, E. J. M. Becker Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek Chair, tilting, M. V. B. Howe, (r) Chandeller, J. Kintz. Chimney cowi, J. H. Richardson Chimney and Breplace, J. Briggs Churs motor, J. B. Sectiand Cigar trimmer, A. Hettinger Clay, pulverizing, G. C. Bovey, Clock striking works,
Leeds & Thorpe, Clothe, stretching and drying, W. Balley Clothes hae pulley, G. H. Byer, Clothes hae pulley, G. H. Byer, Clothes wringer, H. E. Smith, Clothes wringer, H. E. Smith, Clutch, friction, E. Allen, Copying press, letter, G. C. Taft, (r), Contine, stucco, A. Derrom, Cattan worm destroyer, J. Heim | 119,150
119,115
119,225
129,164
1,59,215
139,151
179,115
179,115
139,08
139,111
129,208
139,110
139,08
139,111
139,08
139,110
139,08
139,111
139,08
139,111
139,08
139,111
139,08
139,111
139,08
139,111
139,08
139,111
139,08
139,01
139,00
139,01
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
13 | | Carriage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kiine & Jack. Caster, J. Toler. Casting scabbard ornaments, V. Price. Centifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Cast, tilling, M. V. B. Howe, (r). Chandeller, J. Kintz. Chunney cowl, J. H. Richardson. Chimney and fireplace, J. Briggs. Churn motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulvetring, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloths stretching and drying, W. Balley. Clothes line pulley, G. H. Ryer. Clothes pressing machine, H. E. Smith. Clothes wribger, H. E. Smith. Clothes wribger, H. E. Smith. Clothes, friction, E. Allen. Copying press, letter, G. C. Taft, (r). Cornice, stocco, A. Derrom. Cotton worm destroyer, J. Heim. | 189,150 189,215 189,225 189,264 189,265 189,025 189,151 189,155 189,151 189,152 5,419 189,080 189,111 189,156 189,166 | | Carriage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabbard ornaments, V. Price. Ceasting scabbard ornaments, V. Price. Ceasting scabbard ornaments, V. Price. Ceatifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Castr, tilling, MV. B. Howe, (r). Chandeller, J. Kintz. Chunney cowl, J. H. Richardson. Channey an I fireplace, J. Briggs. Churn motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulvetring, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloth, stretching and drying, W. Balley. Clothes line puller, G. H. Ryer. Clothes pressing machine, H. E. Smith. Clothes wringer, H. E. Smith. Clothes wringer, H. E. Smith. Copying press, letter, G. C. Taft, (r). Cornice, stucco, A. Derrom. Cotton worm destroyer, J. Heim. Coupling, union, W. B. Snow. Cunitivator, E. M. Graham. | 119,150
119,115
119,225
129,164
1,59,215
139,151
179,115
179,115
139,08
139,111
129,208
139,110
139,08
139,111
139,08
139,110
139,08
139,111
139,08
139,111
139,08
139,111
139,08
139,111
139,08
139,111
139,08
139,111
139,08
139,01
139,00
139,01
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
139,00
13 | | Carriage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kilne & Jack. Caster, J. Toler. Casting scabbard ornaments, V. Price. Ceasting scabbard ornaments, V. Price. Ceasting scabbard ornaments, V. Price. Ceatifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Castr, tilling, MV. B. Howe, (r). Chandeller, J. Kintz. Chunney cowl, J. H. Richardson. Channey an I fireplace, J. Briggs. Churn motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulvetring, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloth, stretching and drying, W. Balley. Clothes line puller, G. H. Ryer. Clothes pressing machine, H. E. Smith. Clothes wringer, H. E. Smith. Clothes wringer, H. E. Smith. Copying press, letter, G. C. Taft, (r). Cornice, stucco, A. Derrom. Cotton worm destroyer, J. Heim. Coupling, union, W. B. Snow. Cunitivator, E. M. Graham. | 139,150 139,115 139,225 129,164 149,225 139,165 139,165 139,165 139,165 139,165 139,166
139,166 139,16 | | Carriage top, G. H. Young Carriage top, G. H. Young Carriage topning gear, Kilne & Jack Caster, J. Toter. Casting scabnard ornaments, V. Price Centrifugal machine, E. J. M. Becker Chair fan, rocking, O. Brucek Chair, tilting, MV. B. Howe, (r) Chain machine, B. Herabey. Chair, tilting, MV. B. Howe, (r) Chandeller, J. Kintz. Chimney cowi, J. H. Richardson Chimney an I freplace, J. Briggs Churn motor, J. B. Sweetland Cigar trimmer, A. Hettinger Clay, pulverizing, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloth, stretching and drying, W. Balley Clothes line puller, G. H. Byer Clothes pressing machine, H. E. Smith. Conten, friction, E. Allen. Copying press, letter, G. C. Taft, (r). Cornice, stucco, A. Derrom Cotton worm destroyer, J. Heim. Coupling, union, W. B. Snow Cuitivator, E. M. Graham. Cultivator, E. M. Graham. Cultivator, E. M. Graham. Cultivator, E. M. Graham. Cultivator, E. M. Graham. | 139,130 119,225 129,164 139,213 139,103 | | Carriage top, G. H. Young Carriage top, G. H. Young Carriage running gear, Kilne & Jack Caster, J. Toler. Casting scabhard oranments, V. Price Centifugal machine, E. J. M. Becker Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek Chair, tilling, M. V. B. Howe, (r) Chandeller, J. Kintz. Chimney cowi, J. H. Richardson Caimney an I fireplace, J. Briggs Churn motor, J. B. Sectland Cigar trimmer, A. Hettinger Clay, pulverizing, G. C. Bovey. Clock striking works, Leeds & Thorpe. Cloth, stretching and drying, W. Balley Clothes line pulley, G. H. Ryer. Clothes pressing machine, H. E. Smith. Clothes wringer, H. E. Smith. Clothes, friction, E. Allen. Copying press, letter, G. C. Taft, (r). Cornice, stucco, A. Derrom. Cotton worm destroyer, J. Helm. Coupling, union, W. B. Snow. Cuittivator, E. M. Graham Cuitivator, E. MacKinley. | 139,130 139,131 139,132 139,164 149,212 139,164 149,212 139,103 139,133 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,13 | | Carriage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kiline & Jack. Caster, J. Toler. Casting scabbard ornaments, V. Price. Centifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Cast, tilling, M. V. B. Howe, (r). Chandeller, J. Kintz. Chunney cowl, J. H. Richardson. Chimney and fireplace, J. Briggs. Chura motor, J. B. Secetland. Cigar trimmer, A. Hettinger. Clay, pulveriring, G. C. Bovey. Clock striking works, Leeds & Thorpe. Clothe, stretching and drying, W. Balley. Clothes line puller, G. H. Ryer. Clothes pressing machine, H. E. Smith. Clothes wringer, H. E. Smith. Clothes wringer, H. E. Smith. Clothes wringer, H. E. Smith. Convice, stucco, A. Derrom. Cotton worm destroyer, J. Heim. Coupling, union, W. B. Snow. Cuitivator, E. M. Graham. Cuitivator, E. M. Graham. Cultivator, R. Rust. Collivator, E. M. Graham. Cultivator, R. Rust. Cultivator, R. Rust. Cultivator, R. Rust. Cultivator, Totary, R. McKinley. Daralng machine, B. Arnold. | 139,150 119,252 129,164 119,252 139,164 139,165 139,165 139,165 139,165 139,165 139,165 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,161 139,165 139,16 | | Carpiage top, G. H. Young. Carriage top, G. H. Young. Carriage running gear, Kline & Jack. Caster, J. Toter. Casting scabnard ornaments, V. Price. Centifugal machine, E. J. M. Becker. Chain machine, B. Hersbey. Chair fan, rocking, O. Brucek. Chair, tilting, MV. B. Howe, (r) Chamber owi, J. H. Richardson. Chimney cowi, J. H. Richardson. Chimney an I fireplace, J. Briggs. Churn motor, J. B. Sweetland. Cigar trimmer, A. Hettinger. Clay, pulverizing, G. C. Bovey. Clock striking works, Leeds & Thorpe. Clothes pressing machine, H. E. Smith. Clothes wringer, H. E. Smith. Clothes wringer, H. E. Smith. Clothes wringer, H. E. Smith. Clothe, stretching and drying, W. Balley. Clothes wringer, H. E. Smith. Clothes wringer, H. E. Smith. Clothe, stretching, A. Allen. Copying press, letter, G. C. Taft, (r). Cornice, stucco, A. Derrom. Cotton worm destroyer, J. Heim. Coulivator, E. M. Graham. Cultivator, E. M. Graham. Cultivator, Catry, R. McKinley. Darning machine, B. Arnold. Darning machine, B. Arnold. | 139,130 139,131 139,132 139,164 149,212 139,164 149,212 139,103 139,133 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131 139,266 139,131
139,131 139,13 | | | 129,120 | |--|---| | Delli and E. C. Matthews | 189,074 | | Orop Hght, center slide, C. Deavs | 110,012
139,121
139,056 | | Edging machine, Grouberg & Ferry | 189,142 | | Elevator, J. S. Baldwin. | 118,983 | | Engine governor, steam, E. Ware | 129,002 | | Explosive compounds, E. A. L. Hoberts | 179,234 | | Feather renovator, S. G. Thashauser | 110,041 | | Filter for water coolers, C. Schneider | 109,085 | | Vire arm, brosch loading, T. Hestell | 5,415 | | Fruit jar, scaling, R. S. Manning | 199,170
130,015 | | | 189,075 | | Gas, manufacture of, F. A. Sabbaton | 181,031 | | Gas purifier and regulator, J. A. Enos | 139,181
189,219 | | Sovernor, R. W. Gardner | 189,095
189,055 | | Grain binder, S. D. Locke
Grain, elevating, etc., H. I., P. F., & E. D. Chase
Grain, ventilating, B. Dunwiddle | 103,008 | | Grater verstable, McNels & Stockton | 139,126
139,173 | | Hair curling, E. F. Crain | 188,995 | | Harvester, J. S. Oavis. Harvester, H. J. Silvernale. | 189,127 | | Hat blocking machine, E. C. Falcs Hatchway protector, J. W. Meaker | 129,183 | | Hatchways, closing, J. S. Baldwin | 139,014
138,984 | | Hedge hook, E. S. Turner | 139,058
139,058 | | Horses, detaching, H. Latshew | 139,058 | | Hose coupilug, Wilson & Kendall | 139,223
139,041 | | Jelly glass, D. C. Ripley | 139,081 | | Knife cleaner, T. & L. Gingras | 139,057
139,114 | | Ladders, elevating, A. Miller
Ladder, step, Oakley & Post | 139,175 | | Ladder, step, Hardenbrook & Belfordtamp, J. E. Ambrose (r) | 139,004
5,412 | | Lamp heater, W. Priel | 139,140 | | Last, I. N. C. Saville.
Lathe for turning wood, Smiley & Small | 129,196 | | Lathe for turning wood, A. R. Perk | 139,076 | | Lithographic press, C. C. Manrice
Lock for sliding doors, A. W. Cram | 189,171
189,118 | | Loom stop mechanism, C. Barnes Mail bag, T. J. Hardaway Mantel, false, J. T. Fleehearty | 139,987
139,031 | | Mantel, false, J. T. Fleehearty | 139,187
139,102 | | Mattress, E. Parker | 139,077 | | Medical compound, T. B. Owens | 139,185 | | Mills, grater for cider, W. Barr | 139,105 | | | | | Music leaf turner, J. H. Gerry
Nut and coffee roaster, D. T. Gale | 139,141
139,054 | | Nut and coffee roaster, D. T. Gale | | | Oil tank, self-measuring, J. Schalk, Jr | 139,654
139,084
119,010
113,990 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney Pad, etc., metallic sweat, J. M. C. Bennett. Paper bug machine, H. G. Armstrong. Paper cilp, T. Orton. | 139,954
139,054
139,010
133,990
109,104
139,019 | | Oil tank, self-measuring, J. Schalk, Jr. Oll wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper cilp, T. Orton Paper collar die, Harrington & Rollins. Paper cutter, rotary, H. S. Miller. | 139,664
139,084
139,010
133,990
139,019
139,146
139,178 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). | 139,654
139,084
139,010
133,990
139,104
139,146
139,176
138,933
5,422 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins. Paper collar die, Harrington & Rollins. Paper geding machine, J. T. Ashley. Paper washer, E. B. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. | 139,654
139,084
139,010
123,990
159,104
139,019
139,146
139,175
138,983
5,422
159,127
159,009 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. | 139,654
139,084
139,010
133,990
139,104
139,146
139,176
138,963
5,422
139,127 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic
sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins. Paper collar die, Harrington & Rollins. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doherty. | 139,654
139,054
139,010
123,990
159,104
139,146
139,176
138,933
5,422
159,127
159,009
139,132
139,132
139,132 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper cutter, rotary, H. S. Müller. Paper feeding machine, J. T. Ashley Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. | 139,654
129,084
129,010
129,104
129,104
129,146
129,146
129,145
139,127
139,127
139,009
139,132
139,125
139,125
139,125
139,125
139,125 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Boilins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Piano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Flanter, corn and cotton, Savage & Doty. | 139,654
129,084
129,010
123,990
129,146
129,176
135,983
5,422
139,125
139,125
139,125
129,125
129,125
129,145
139,145
139,145
139,145
139,145
139,145
139,145 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper cellp, T. Orton. Paper cellar die, Harrington & Rollins. Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Photographic camera, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble. Plano lid prop stick, M. Doherty. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark. Planter, corn and cotton, Savage & Doty. Plow, G. B. Vaughan. | 139,654
129,084
119,010
129,104
129,104
139,146
139,146
139,146
139,127
139,020
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camers, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Plano Iid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, G. B. Vaughan Plow, wheel, I. B. Green. Plow, wheel, I. B. Green. | 139,654
129,064
129,090
129,900
129,104
139,146
139,146
139,127
138,930
5,422
139,127
139,009
139,009
139,132
139,132
139,145
139,145
139,174
139,215
139,152
139,152
139,154
139,154
139,154
139,155
139,154
139,155
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156
139,156 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper cellp, T. Orton. Paper cellar die, Harrington & Rollins. Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Photographic camera, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, J. Gibbs (r). Plow, G. B. Vaughan. Plow, wheel, I. B. Green. Plow, a beel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. |
129,054
129,010
129,104
129,104
129,104
129,104
129,175
135,983
5,422
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
142,174
139,205
142,174
139,005
142,174
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005
143,005 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camers, E. P. Spahn. Photographic camers, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Plano Id prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, G. B. Vaughan Plow, a. B. Vaughan Plow, theel, C. B. Stevens Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison Printing ink attachment, E. A. Howitt. | 129,054
129,010
129,010
129,104
129,115
129,115
129,115
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,032
139,121
139,032
139,121
139,125 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper cellp, T. Orton. Paper cellar die, Harrington & Rollins. Paper center, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Photographic camera, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Piano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, J. Gibbs (r). Plow, J. Gibbs (r). Plow, wheel, I. B. Green. Plow, a heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Poliksing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. | 129,054
129,064
129,069
129,109
129,109
129,146
129,146
129,147
138,930
139,002
139,127
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,125
139,12 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. C. Bennett. Paper bag machine, H. G. Armstrong. Paper cellp, T. Orton. Paper cellar die, Harrington & Rollins Paper centre, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Photographic camera, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, G. B. Vaughan. Plow, and C. C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison Zrinting ink attachment, E. A. Howitt. Printing press, G. A. Hunt Promping shears, J. S. Crum. Pramp, compound steam, A. J. L. Loretz. | 129,054 129,010 123,900 123,900 129,104 129,114 129,114 129,115 138,930 138,930 139,125 139,126
139,126 139,12 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper cellar die, Harrington & Rollins. Paper gener feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doberty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, G. B. Vaughan Plow, wheel, I. B. Green. Plow, a heel, I. B. Green. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Pruning shears, J. S. Crum. Pump, compound steam, A. J. L. Loretz. | 129,054 129,064 129,064 129,169 129,104 129,104 129,104 129,105 139,107 139,10 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper cellp, T. Orton. Paper cellar die, Harrington & Rollins. Paper centre, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Photographic camera, E. P. Spahn. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, J. Gibbs (r). Plow, G. B. Vaughan. Plow, wheel, I. B. Green. Plow, the C. G. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Pranting press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Prunning shears, J. S. Crum. Pamp, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, sabmerged force, A. T. Hafford. Pump, steam, W. Aldrich. | 129,054 129,064 129,069 129,169 129,146 129,146 129,146 129,146 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,148 129,14 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper couter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Plotographic camera, E. P. Spahn. Plotographic camera, E. P. Spahn. Plotographic camera, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, a. heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Pruning shears, J. S. Grunn. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, aubmerged force, A. T. Hafford. Pump, steam, W. Aldrich. Punch and nippers, hand, J. O. Reilley. Range, cooking, J. L. Pran, Jr. | 129,054 129,064 129,064 129,064 129,166 129,176 129,146 129,176 129,176 129,177 129,127 129,127 129,127 129,127 129,127 129,128 129,127 129,128 129,127 129,128 129,127 129,128
129,128 129,128 129,128 129,128 129,128 129,128 129,12 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Planne in the proposition for, G. L. Eagan. Planter, corn, A. H. Stark Planter, corn, A. H. Stark Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, J. Gibbs (r). Plow, J. Gibbs (r). Plow, theel, C. B. Stevens. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt Printing press, G. A. Hunt Propellers, operating screw, J. Wilcoxen. Prump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, compound ateam, A. J. L. Loretz. Tump, submerged force, A. T. Hafford. Pump, steam, W. Aldrich. Punch and nippers, hand, J. O. Reilley. Raulroad switch, C. H. White. Sailroad switch, C. H. White. | 129,654 129,064 129,070 123,390 129,104 129,119 129,146 129,146 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,148 129,147 129,148 129,14 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper cellp, T. Orton. Paper cellp, T. Orton. Paper cellp, T. Orton. Paper cellar die, Harrington & Rollins. Paper centre, rotary, H. S. Müller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Plow, L. Gibbs (r). Plow, G. B. Vaughan. Plow, theel, I. B. Green. Plow, wheel, I. B. Green. Plow, theel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Pruning sharrs, J. S. Crum. Pamp, compound steam, A. J. L. Loretz. Pump, compound ateam, A. J. L. Loretz. Pump, steam, W. Aldrich. Punch and nippers, hand, J. O. Rellley. Railroad switch, C. H. White. Sailroad water column, J. N. Poage. | 129,054 129,061 129,061 129,061 129,162 129,166 129,175 129,146 129,175 139,127 139,127 139,125 139,127 139,125 139,12 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper cellar die, Harrington & Rollins Paper cetter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. J. Harvey. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, C. B. Vaughan Plow, wheel, I. B. Green. Plow, a heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt Propellers, operating screw, J. Wilcoxen. Pruning shears, J. S. Grunn. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, scompound compound steam, A. J. L. Loretz. Pump, scompound R. Belley. Railroad switch, C. R. White. R | 129,054 129,064 129,064 129,164 129,164 129,175 129,146 129,175 129,127 129,125 129,127 129,125 129,127 129,125 129,127 129,125 129,12 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Plannel Id prop stick, M. Doherty. Pleps stems, bending, J. Harvey. Pleps
tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, J. Gibbs (r). Plow, J. Gibbs (r). Plow, J. Gibbs (r). Plow, wheel, I. B. Green. Plow, wheel, I. B. Green. Plow, wheel, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Prump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, steam, W. Aldrich Pump, steam, W. Aldrich Punch and nippers, hand, J. O. Reilley. Railroad switch, G. H. Walte. Sailroad switch, G. H. Walte. Sailroad switch, C. H. Walte. Sailroad switch, C. H. Walte. Sailroad switch, G. H. Walte. Sailroad switch, Sinal, J. Callen. Railroad the, W. H. Sterling Railroad switch signal, J. Callen. Railroad the, W. H. Sterling Railroad switch signal, J. Callen. Railroad the, W. H. Sterling Railroad switch signal, J. Callen. Railroad the, W. H. Sterling Railroad switch signal, J. Callen. Railway links, forming, P. H. Healey. Sailway links, forming, P. H. Healey. | 129,054 129,064 129,064 129,164 129,179 129,146 129,146 129,146 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,148 129,14 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper cotter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. J. Harvey. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, C. B. Vaughan. Plow, wheel, I. B. Green. Plow, - heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Pruning shears, J. S. Grunn. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, scompound steam, A. J. L. Loretz. Pump, scompound steam, A. J. L. Loretz. Pump, scompound steam, A. J. L. Loretz. Pump, submerged force, A. T. Hafford. Pump, steam, W. Aldrich Panny, steam, W. Aldrich Pump, | 129,054 129,061 129,061 129,061 129,160 129,170 129,146 129,173 129,146 129,173 129,146 129,173 129,146 129,173 129,146 129,173 129,125 129,12 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Boilins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Planter, corn, A. H. Stark Planter, corn, A. H. Stark Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, J. Gibbs (r). Plow, J. Gibbs (r). Plow, theel, C. B. Stevens. Polyming, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt Printing press, G. A. Hunt. Printing press, G. A. Hunt. Printing press, G. A. Hunt. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, submerged force, A. T. Hafford. Pump, steam, W. Aldrich Punch and nippers, hand, J. O. Reilley Range, cooking, J. L. Pfan, Jr. Railroad switch, C. H. Walte. Sailroad switch, C. H. Walte. Sailway links, forming, P. H. Healey. Sailway links, forming, P. H. Healey. Sailway scale platform, C. C. Warren. Railroad the, W. H. Sterling Railroad water column, J. N. Poage. Railway links, forming, P. H. Healey. Sailway scale platform, C. C. Warren. Railway links, forming, P. H. Healey. Sailway scale platform, C. C. Warren. Railroad the, W. H. Lewis. Refrigerator and sideboard, G. L. Packard. Servicerstor, etc. J. F. Schnedder. | 129,054 129,064 129,069 129,169 129,169 129,146 129,146 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,147 129,148 129,147 129,148 129,147 129,148 129,148 129,148 129,148 129,148 129,148 129,148 129,148 129,148 129,148 129,148 129,149 129,148 129,14 | | Oil tank, self-measuring, J. Schalk, Jr. Oil
wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper collar die, Harrington & Rollins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photograph burnishing press, Entrekin & Bramble Plano Ild prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, G. B. Vaughan Plow, wheel, I. B. Green. Plow, a heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Printing press, G. A. Hunt. Printing press, G. A. Hunt. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, steam, W. Aldrich. Pump, steam, W. Aldrich. Punp, steam, W. Aldrich. Punp, steam, W. Aldrich. Pange, cooking, J. L. Pran, Jr. Bailroad switch, C. H. Waite. Bailroad swatch signal, J. Cullen. Bailroad swatch signal, J. Cullen. Bailroad swatch signal, J. Cullen. Bailroad swatch signal, J. C. C. Warren. Bazor strop, J. B. Lucas. Beamer, adjustable, A. Shedlock. Befrigerator, w. H. Lewis. Befrigerator, w. H. Lewis. Befrigerator, w. H. Lewis. Befrigerator, w. H. Lewis. Befrigerator, w. J. Lewis. Befrigerator, w. J. Lewis. Befrigerator, w. J. Lewis. Befrigerator, w. H. Lewis. Befrigerator, w. H. Lewis. Befrigerator, w. H. Lewis. Befrigerator, w. J. Lewis. Befrigerator, w. J. Lewis. Befrigerator, w. J. Sehnelder. Belling metal, George & Durfee. Booking slates, attaching, S. Farouhar. | 129,054 129,064 129,069 129,109 129,109 129,109 129,146 129,179 129,146 129,179 129,146 129,179 129,125 129,12 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper cellp, T. Orton. Paper cellp, T. Orton. Paper cellp, T. Orton. Paper feeding machine, J. T. Ashley. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, G. B. Vaughan Plow, wheel, I. B. Green. Plow, a heel, I. B. Green. Prow, wheel, I. B. Green. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt Propellers, operating screw, J. Wilcoxen. Pruning shears, J. S. Crum. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, sceam, W. Aldrich Pump, steam, W. Aldrich Pump, steam, W. Aldrich Pung, steam, W. Aldrich Pang, steam, W. Aldrich Pang, steam, W. Aldrich Pang, steam, W. Aldrich Railroad switch, C. H. White Railroad switch, C. H. White Railroad switch, C. H. White Railroad switch signal, J. Cullen Railroad switch, C. H. White | 129,054 129,054 129,054 129,159 129,146 129,146 129,147 129,146 129,147 129,148 129,147 129,148 129,14 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett, Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Patroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Planter, corn, A. H. Stark Planter, corn, A. H. Stark Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, G. B. Vaughan. Plow, L. Gibbs (r). Plow, theel, C. B. Stevens. Polishing device, J. G. Morrison. Printing ink attachment, E. A. Howitt Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Prump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, steam, W. Aldrich. Punch and nippers, hand, J. O. Reilley Bange, cooking, J. L. Pran, Jr. Bailroad switch, G. H. White. Sailroad switch signal, J. Culien. Bailroad switch, C. H. White. Sailroad switch signal, J. Callen. Bailroad switch, C. H. White. Sailroad switch, S. H. Lewis. Befrigerator and sideboard, G. L. Packard. Refrigerator, W. H. Lewis. Befrigerator, Dobson. | 129,054 129,064 129,064 129,164 129,179 129,146 129,179 129,146 129,179 129,146 129,179 129,146 129,179 129,125
129,125 129,12 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper cellar die, Harrington & Rollins. Paper cetter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. J. Harvey. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, a. becl. C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Prump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, steam, W. Aldrich Pump, steam, W. Aldrich Pump, steam, W. Aldrich Punch and nippers, hand, J. O. Relliey Railroad switch, C. H. White Sailroad switch, Smal, J. Cullen Railroad switch, C. H. White Sailroad switch, C. H. White Sailroad switch, Smal, J. Cullen Railroad switch, George & Durfee. Racor strop, J. B. Lucas. Reamer, adjustable, A. Shedlock Refrigerator, etc., J. F. Schneider. Reamer, adjustable, A. Shedlock Refrigerator and sideboard, G. L. Packard. Refrigerator, W. H. Lewis. Refrigerator and sideboard, G. L. Packard. Refrige | 129,054 129,064 129,169 129,169 129,164 129,179 129,146 129,179 129,175 129,17 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper collar die, Harrington & Rollins Paper reeding machine, J. T. Ashley. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. J. Harvey. Pipe stems, bending, J. Harvey. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, a beel, L. B. Green. Plow, a beel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Prump, compound ateam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, steam, W. Aldrich Railroad switch, C. H. White Railroad switch, George & Durfee. Railway Insk, forming, P. H. Healey Railway scale platform, C. C. Warren. Razor strop, J. B. Lucas. Reamer, sqlustable, A. Shedlock Refrigerator and sideboard, G. L. Packard. Remer, sqlustable, A. Shedloc | 129,054 129,054 129,054 129,159 129,146 129,150 129,15 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper culter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. Planter, corn, A. H. Stark Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, J. Gibbs (r). Plow, J. Gibbs (r). Plow, J. Gibbs (r). Plow, wheel, I. B. Green. Plow, beel, C. B. Stevens. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt Printing press, G. A. Hunt Propellers, operating screw, J. Wilcoxen. Pruning shears, J. S. Grum. Prump, compound ateam, A. J. L. Loretz. Pump, compound ateam, A. J. L. Loretz. Pump, submerged force, A. T. Hafford. Pump, steam, W. Aldrich. Pump, steam, W. Aldrich. Bailroad switch, C. H. White. Sailroad awitch, C. H. White. Sailroad awitch, C. H. White. Sailroad awitch, C. H. White. Sailroad switch, C. H. White. Sailroad switch, C. H. White. Sailroad spann, J. J. Ponge. Bailway links, forming, F. H. Healey. Callway scale platform, C. C. Warren. Bailway links, forming, F. H. Healey. Callway scale platform, C. C. Warren. Bailway links, forming, F. F. Prey Scraper, road, L. P. Schneider. Bolling metal, George & Durfee. metallae, C. F. Rents siaw setting m | 129,054 129,064 129,064 129,164 129,165 129,164 129,165
129,165 129,16 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper cellp, T. Orton Paper cellp, T. Orton Paper cellp, T. Orton Paper feeding machine, J. T. Ashley Paper feeding machine, J. T. Ashley Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. J. Harvey. Pipe stems, bending, J. Harvey. Pipe stems, bending, J. Harvey. Pipe stems, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, a heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Prump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, steam, W. Aldrich Railroad switch, C. H. White George & Durfee. Rooding slates, attaching, S. Farouhar, safe, milk, J. P. Dale. saw blanks, case for, C. I. Walker saw blanks, case for, C. E. Frey scr | 129,054 129,054 129,054 129,154 129,154 129,154 129,154 129,155 129,15 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper bag machine, H. G. Armstrong. Paper collar die, Harrington & Rollins Paper collar die, Harrington & Rollins Paper cutter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doherty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, G. B. Vaughan Plow, wheel, I. B. Green. Plow, a heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Pruning shears, J. S. Crum. Pamp, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, sceam, W. Aldrich. Pump, sceam, W. Aldrich. Punp, steam, W. Aldrich. Punp, steam, W. Aldrich. Pailroad switch, C. H. Walte. Railroad switch signal, J. Cullen Railroad switch, C. H. Walte. Railroad switch, Case of C. L. Walker. saw hlanks, case for, C. I. Walker. saw diling metal, George & Durfee. Rooding slates, attaching, S. Farquhar. safe, milk, J. P. Dale. saw blanks, case for, C. I. Walker. saw diling machine, E. W. Becke. sewing machine, L. W. Lathrop. | 129,054 129,064 129,069 129,164 129,165 129,16 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper cellar die, Harrington & Rollins. Paper cedtar, rotary, H. S. Miller. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photograph burnishing press, Entrekin & Bramble Plano lid prop stick, M. Doberty. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, G. B. Vaughan Plow, wheel, I. B. Green. Plow, a heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Pruning shears, J. S. Crum. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, atcam, W. Aldrich Pump, steam, W. Aldrich Pump, steam, W. Aldrich Railroad switch, C. H. Walte. Railroad switch, C. H. Walte. Railroad switch Signal, J. Cullen Railroad switch, C. H. Walte. F. Schneider. Railroad switch, C. F. F. Schneider. Railroad switch, C. F. F. Schneider. Railroad switch, C. F. F. Schneider. Railroad switch, George & Durfee. Rooding machine, C. F. Henis aw shank, case for, C. I. Walker. aw filing machine, C. F. Henis aw sattag machine, C. F. Henis aw sattag machine, E. W. Beche. weing machine, L. W. Lathrop. sewing machine, L. W. Lathrop. sewing machine, L. W. Lathrop. sewing machine L. W. | 129,054 129,054 129,054 129,154 129,155
129,155 129,15 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper cellar die, Harrington & Rollins. Paper geding machine, H. G. Armstrong. Paper feeding machine, J. T. Ashley. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. J. Harvey. Pipe stems, bending, J. Harvey. Pipe stems, bending, J. Harvey. Pipe stems, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, L. Gibbs (r). Plow, a beel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing ink attachment, E. A. Howitt. Printing press, G. A. Hunt. Propellers, operating screw, J. Wilcoxen. Prump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, steam, W. Aldrich. Pump, steam, W. Aldrich. Pump, steam, W. Aldrich. Punch and nippers, hand, J. O. Rellley. Range, cooking, J. L. Prin, Jr. Railroad switch, C. H. White. Railway inks, forming, P. H. Healey. Railway scale platform, C. C. Warren. Racor strop, J. B. Lucas. Reamer, adjustable, A. Shedlock. Refrigerator and sideboard, G. L. Packard. Remer, straper, road, L. P. Wright. Screw and clamp jack, Jackson & Watson. Screw driver, C. Law. Seat, folding, W. W. Parker. Seed dropper, E | 129,054 129,064 129,064 129,164 129,164 129,164 129,165 139,164 139,175 139,166 139,175 139,166 139,175 139,166 139,175 139,166 139,175 139,166 139,175 139,166 139,175 139,166 139,175 139,166 139,175 139,175 139,176 139,17 | | Oil tank, self-measuring, J. Schalk, Jr. Oil wells, cleaning, J. J. Looney. Pad, etc., metallic sweat, J. M. G. Bennett. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper clip, T. Orton. Paper cellar die, Harrington & Rollins. Paper cetter, rotary, H. S. Miller. Paper feeding machine, J. T. Ashey. Paper washer, E. S. Hanna (r). Pavements, composition for, G. L. Eagan. Petroleum, treating heavy, J. J. Looney. Photographic camera, E. P. Spahn. J. Harvey. Pipe stems, bending, J. Harvey. Pipe tongs, F. H. Merrill. Planter, corn, A. H. Stark Planter, corn and cotton, Savage & Doty. Plow, L. Gibbs (r). Plow, G. B. Vaughan. Plow, wheel, I. B. Green. Plow, - heel, C. B. Stevens. Pocket openings, fastening, J. W. Davis. Polishing device, J. C. Morrison. Printing ink attachment, E. A. Howitt. Printing ink attachment, E. A. Howitt. Printing shears, J. S. Grum. Pump, compound steam, A. J. L. Loretz. Pump, compound steam, A. J. L. Loretz. Pump, steam, W. Aldrich Pump, steam, W. Aldrich Pump, steam, W. Aldrich Punp, steam, W. Aldrich Punp, steam, W. Aldrich Punp, steam, W. Aldrich Panny, steam, W. Aldrich Railroad switch, C. H. White Railroad switch signal, J. Cullen Railroad switch, C. H. White Railroad switch, C. H. White Railroad switch, S. Facheider. Railroad steep platform, C. C. Warren. Razor strop, J. B. Lucas. Reamer, ndjustable, A. Shedlock. Refrigerator, etc., J. F. Schneider. Reifrigerator and sideboard, G. L. Packard. Rerigerator, etc., J. F. Schneider. Reifrigerator and sideboard, G. L. Packard. Rerigerator, etc., J. F. Schneider. Reifrigerator and sideboard, G. L. Packard. Rerigerator, etc., J. F. Schneider. Reifrigerator and sideboard, G. L. Packard. Rerigerator, od. L. P. Wright. Rew alling machine, E. W. Henles. Rew and clamp jack, Jackwon & Watson. Rew and clamp ja | 129,054 129,054 129,054 129,159 129,146 129,146 129,147 129,14 | | columning mule, J. J. Dewey 109.051 |
--| | pittoon, If, Tonngue | | Spring, door, M. L. Webster 109,007 | | Station Indicator, C. Barton | | Steam condenser, J. L. Alberger | | Stirrop, safety, L. H. Jones 1'9,100 | | Stone, artificial, W. H. Lewis 179,167 | | stove, sual oll, J. H. Thorp (r) | | MOVE, BESTINE AND COOK, IC MCConnell 198127 | | Stove, heating, C. G. Thompson 123,015 | | Hove, heating, C. G. Thompson 123,005
Stove pipe damper, J. Emmert 105,077 | | Store nine thimble F Tarrent | | Stove polish, J. L. Danforth | | Sugar, manufacture of, A. F. W. Pariz 100.008 | | Telegraph, printing, T. A. Edison | | Telegraph, printing, T. A. Edison 1913 | | Thill coupling, J. H. Parkhurst 139/02 | | Thrashing machine, H. Wehler 10,318 | | Thrashing machine attachment, W. Masterton 175,073 | | Time printing machine, J. C. Hinchman 139,355 | | Time printing machine, J. C. Hinchman 199354 | | Tongs, guttering, J. Schwartz 130,198 | | Trap, animal, G. A. Norman 19,182 | | Truck O. D. Jackberry | | Trunk, G. B. Jenkinson | | Umbrella stretchers, J. Shepard | | Valve, automatic regulating, G. L. Eltson 115,163 | | Valve, balanced, F. P. Cady 128,992 | | Valve for cut-off, rotary, J. W. Strange 139,033 | | Valve, safety, G. Swenson 129,309 | | Vehicle wheel, J. Hageman 138,144 | | Vessels, center and bilge keels for, S. P. Willeby, 139,222 | | | | Wagon brake shoe, H. Seltz 129,086 | | Wagon seat, J. U. Shultz 139,077 | | Wagon seat, J. U. Shultz 139,077 | | Wagon seat, J. U. Shultz 139,007 Washing machine, L. Beautien 139,007 | | Wagon seat, J. U. Shultz 139,071 Washing machine, L. Beau'ien 139,07 Washing machine, A. Filkins 130,135 | | Wagon seat, J. U. Shuitz 139,097 Washing machine, L. Beau'len 139,107 Washing machine, A. Filkins 139,138 Washing machine, A. W. Jennings 139,138 Washing machine, J. Riggsbee 130,138 | | Wagon seat, J. U. Shultz 139,071 Washing machine, L. Beau'lien 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 119,138 Washing machine, J. Higgsbee 130,138 Washing machine, G. W. Wassener 130,003 | | Wagon seat, J. U. Shultz 139,097 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 119,138 Washing machine, J. Higgsbee 130,138 Washing machine, G. W. Wassener 130,003 | | Washing machine, I. Beaulien 139,097 Washing machine, A. Flikins 139,107 Washing machine, A. Flikins 129,135 Washing machine, A. W. Jennings 129,128 Washing machine, J. Rizgabee 139,191 Washing machine, G. W. Wageoner 139,001 Washing machine, W. S. Toung 109,100 | | Washing machine, A. Flikins 139,071 Washing machine, A. Flikins 139,107 Washing machine, A. Flikins 139,135 Washing machine, A. W. Jennings 130,158 Washing machine, J. Rizgsbee 130,191 Washing machine, G. W. Wageoner 130,003 Washing machine, W. S. Young 139,003 Waterproofing canvas, etc., P. H. Morgan 139,001 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 129,136 Washing machine, J. Higgsbee 129,138 Washing machine, G. W. Wageoner 120,003 Washing machine, W. S. Young 129,003 Waterproofing cauvas, etc., P. H. Morgan 129,017 Water wheel, Abell & Cole 128,227 | | Wagon seat, J. U. Shultz 139,071 Washing machine, L. Beau'lien 139,107 Washing machine, A. Filklos 129,135 Washing machine, A. W. Jennings 119,138 Washing machine, J. Higgsbee 120,131 Washing machine, G. W. Wageoner 129,003 Washing machine, W. S. Young 129,003 Water wheel, Abell & Cole 125,773 Water wheel chuic, J. Abell 125,973 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beau'ilen 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 120,138 Washing machine, J. Hizgsbee 139,191 Washing machine, G. W. Wageoner 239,003 Washing machine, W. S. Toung 129,003 Waterproofing canvas, etc., P. H. Morgan 129,012 Water wheel, Abell & Cole 128,973 Water wheel ohuie, J. Abell 128,973 Well, driven or bored, J. E. Morrison 129,012 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 129,125 Washing machine, A. W. Jennings 129,125 Washing machine, J. Higgsbee 139,103 Washing machine, G. W. Wageoner 139,003 Washing machine, W. S. Toung 129,003 Waterproofing canvas, etc., P. H. Morgan 129,003 Water wheel, Abell & Cole 128,573 Water wheel chuite, J. Abell 128,978 Well, driven or bored, J. E. Morrison 139,003 Whip handle cap, G. A. Burr 128,203 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 139,135 Washing machine, G. W. Wagener 130,004 Washing machine, G. W. Wagener 130,004 Washing machine, W. S. Young 139,000 Waterproofing canvas, etc., P. H. Morgan 139,001 Water wheel, Abell & Cole 135,973 Well, driven or bored, J. E. Morrison 139,018 Well, driven or bored, J. E. Morrison 139,018 Whip handle cap, G. A. Burr 139,025 Whip socket, A. Searles 129,025 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beau'ilen 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 120,138 Washing machine, J. Rizgsbee 139,193 Washing machine, G. W. Wageoner 239,603 Washing machine, W. S. Toung 129,002 Waterproofing canvas, etc., P. H. Morgan 129,012 Water wheel, Abell & Cole 125,972 Water wheel chuie, J. Abell 126,272 Well, driven or bored, J. E. Morrison 129,012 Whip socket, A. Searles 139,026 Windmill, T. R. & A. C. Jackson 129,026 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 129,125 Washing machine, A. W. Jennings 119,128 Washing machine, J. Higgsbee 139,103 Washing machine, G. W. Wageoner 139,003 Washing machine, W. S. Young 129,003 Waterproofing canvas, etc., P. H. Morgan 129,012 Water wheel, Abell & Cole 128,572 Water wheel chute, J. Abell 128,978 Well, driven or bored, J. E. Morrison 139,003 Whip handle cap, G. A. Burr 128,201 Whip handle cap, G. A. Scarlea 129,005 Windmill, T. R. & A. C. Jackson 139,005 Wind wheel, A. Haymond 120,129 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 129,136 Washing machine, G. W. Wageoner 120,004 Washing machine, G. W. Wageoner 120,002 Washing machine, W. S. Young 129,100 Waterproofing canvas, etc., P. H. Morgan 129,017 Water wheel, Abell & Cole 125,973 Well, driven or bored, J. E. Morrison 129,018 Whip handle cap, G. A. Burr 129,026 Window sceech, W. & A. C. Jackson 129,007 Wind wheel, A. Raymond 130,129 Window screen, W. H. Eletcher 120,125 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 129,136 Washing machine, G. W. Wageoner 120,004 Washing machine, G. W. Wageoner 120,002 Washing machine, W. S. Young 129,100 Waterproofing canvas, etc., P. H. Morgan 129,017 Water wheel, Abell & Cole 125,973 Well, driven or bored, J. E. Morrison 129,018 Whip handle cap, G. A. Burr 129,026 Window sceech, W. & A. C. Jackson 129,007 Wind wheel, A. Raymond 130,129 Window screen, W. H. Eletcher 120,125 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 120,125 Washing machine, A. W. Jennings 120,126 Washing machine, J. Higgsbee 120,100 Washing machine, G. W. Wageoner 120,001 Washing machine, W. S. Young 120,100 Waterproofing cauvas, etc., P. H. Morgan 129,101 Water wheel, A. Bell 128,978 Well, driven or bored, J. E. Morrison 129,002 Whip handle cap, G. A. Burr 128,002 Whip socket, A. Searles 129,003 Wind wheel, A. Eaymond 120,003 Window screen, W. H. Fletcher 139,128 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 139,107 Washing machine, A. Filkins 129,125 Washing machine, A. W. Jennings 130,138 Washing machine, J. Rizgsbee 125,125 Washing machine, G. W. Wageoner 230,003 Washing machine, W. S. Toung 120,100 Waterproofing canvas, etc., P. H. Morgan 125,972 Water wheel, Abell & Cole 128,972 Water wheel chuie, J. Abell 128,973 Well, driven or bored, J. E. Morrison 129,005 Whip haudle cap, G. A. Burr 129,005 Windmill, T. R. & A. C. Jackson 129,005 Windmill, T. R. & A. C. Jackson 129,007 Wind wheel, A. Raymond 129,128 Wrench, pipe, G. P. Moloney 129,177 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 139,107 Washing machine, A. Filkins 129,125 Washing machine, A. W. Jennings 119,128 Washing machine, J. Riggsbee 139,103 Washing machine, G. W. Wageoner 139,003 Washing machine, W. S. Toung 129,003 Waterproofing canvas, etc., P. H. Morgan 129,012 Water wheel, Altell & Cole 128,572 Water wheel chute, J. Abell 128,978 Well, driven or bored, J. E. Morrison 139,003 Whip handle cap, G. A. Burr 128,203 Windmill, T. R. & A. C. Jackson 139,005 Windwill, T. R. & A.
C. Jackson 139,007 Wind wheel, A. Haymond 100,139 Window screen, W. H. Fletcher 129,173 SCHEDULE OF PATENT FEES: | | Wagon seat, J. U. Shuitz 139,071 Washing machine, L. Beaulien 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 129,136 Washing machine, J. Higgsbee 129,003 Washing machine, G. W. Wageoner 120,003 Washing machine, W. S. Young 129,003 Waterproofing cauvas, etc., P. H. Morgan 129,003 Water wheel, Abell & Cole 125,978 Well, driven or bored, J. E. Morrison 129,035 Whip handle cap, G. A. Burr 158,293 Whip handle cap, G. A. Burr 158,203 Windwhiel, A. Raymond 129,025 Wind wheel, A. Raymond 120,037 Window screen, W. H. Fletcher 139,128 Wrench, pipe, G. P. Moloney 129,172 SCHEDULE OF PATENT FEES: On each Caveat \$16 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 139,107 Washing machine, A. Filkins 129,135 Washing machine, A. W. Jennings 130,138 Washing machine, J. Rizgsbee 130,103 Washing machine, G. W. Wageoner 129,003 Washing machine, W. S. Toung 129,003 Washing machine, J. Toung 129,003 Waterproofing canvas, etc., P. H. Morgan 129,012 Water wheel, Abell & Cole 125,973 Water wheel ohuie, J. Abell 125,973 Well, driven or bored, J. E. Morrison 129,003 Whip handle cap, G. A. Burr 128,293 Whip socket, A. Searlea 129,026 Windmill, T. R. & A. C. Jackson 129,026 Wind wheel, A. Raymond 130,129 Window screen, W. H. Fletcher 139,178 Wrench, pipe, G. P. Moloney 129,177 SCHEDULE OF PATENT FEES: On each Cavest \$10 On each Trade-Mark \$25 | | Wagnon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 139,107 Washing machine, A. Filkins 129,125 Washing machine, A. W. Jennings 119,128 Washing machine, J. Higgsbee 139,103 Washing machine, G. W. Wageoner 139,003 Washing machine, W. S. Toung 129,003 Waterproofing canvas, etc., P. H. Morgan 129,003 Water wheel, Altell & Cole 128,572 Water wheel ohute, J. Abell 128,573 Well, driven or bored, J. E. Morrison 139,003 Whip handle cap, G. A. Burr 128,003 Windmill, T. R. & A. C. Jackson 139,005 Windwill, T. R. & A. C. Jackson 139,007 Wind wheel, A. Raymond 120,128 Wrench, pipe, G. P. Moloney 129,177 SCHEDULE OF PATENT FEES: On each Caveat 816 On each Trade-Mark 8225 On filing each application for a Fatent (17 years) 815 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 139,135 Washing machine, A. Filkins 129,135 Washing machine, J. Higgsbee 129,135 Washing machine, J. Higgsbee 129,001 Washing machine, W. S. Tonng 129,002 Waterproofing canvas, etc., P. H. Morgan 129,002 Water wheel, Abell & Cole 128,572 Water wheel chute, J. Abell 128,978 Well, driven or bored, J. E. Morrison 129,003 Whip handle cap, G. A. Burr 128,003 Whip acket, A. Searles 129,003 Wind wheel, A. Eaymond 129,003 Wind wheel, A. Eaymond 129,003 Window screen, W. H. Fletcher 139,123 Wrench, pipe, G. P. Moloney 129,177 SCHEBULE OF PATENT FEES: On each Cavest \$10 On each ach application for a Patent (17 years) \$15 On fling each application for a Patent (17 years) \$15 On texuing each original Patent \$20 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 139,153 Washing machine, A. Filkins 129,125 Washing machine, A. W. Jennings 130,138 Washing machine, J. Rizgsbee 130,153 Washing machine, G. W. Wageoner 139,003 Washing machine, W. S. Toung 190,000 Waterproofing canvas, etc., P. H. Morgan 125,012 Water wheel, Abell & Cole 135,972 Water wheel ohuie, J. Abell 125,973 Well, driven or bored, J. E. Morrison 139,003 Whip handle cap, G. A. Burr 139,005 Windmill, T. R. & A. C. Jackson 139,005 Windmill, T. R. & A. C. Jackson 139,005 Wind wheel, A. Raymond 130,123 Wrench, pipe, G. P. Moloney 139,177 SCHEDULE OF PATENT FEES: On each Cavest \$10 On each Trade-Mark \$25 On fing each application fors Patent (17 years) \$15 On tzsuling each original Patent \$25 On appel to Examiner-in-Chief \$16 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 130,107 Washing machine, A. Filkins 120,125 Washing machine, A. W. Jennings 110,128 Washing machine, J. Rizgsbee 130,003 Washing machine, G. W. Wageoner 130,003 Washing machine, W. S. Toung 120,000 Waterproofing canvas, etc., P. H. Morgan 129,001 Water wheel, Altell & Cole 128,572 Water wheel chute, J. Abell 128,978 Well, driven or bored, J. E. Morrison 139,003 Whip handle cap, G. A. Burr 129,005 Windmill, T. R. & A. C. Jackson 139,005 Windwill, T. R. & A. C. Jackson 139,007 Wind wheel, A. Haymond 139,107 Wrench, pipe, G. P. Moloney 129,128 Wrench, pipe, G. P. Moloney 129,127 SCHEDULE OF PATENT FEES: 0n each Caveat 516 On each Trade-Mark 925 On ting each application for a Patent (17 years) \$15 On ting each application for Patent \$20 On appeal to Examiner-in Chief 510 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 139,107 Washing machine, A. Filkins 120,123 Washing machine, A. W. Jennings 120,123 Washing machine, J. Higgsbee 120,003 Washing machine, W. S. Tonng 120,003 Washing machine, W. S. Tonng 120,003 Waterproofing cauvas, etc., P. H. Morgan 129,003 Water wheel, Abell & Cole 125,578 Well, driven or bored, J. E. Morrison 129,003 Whip handle cap, G. A. Burr 128,203 Whip mocket, A. Searles 129,003 Wind wheel, A. Eaymond 120,003 Wind wheel, A. Raymond 120,003 Window screen, W. H. Fletcher 120,123 Wrench, pipe, G. P. Moloney 120,177 SCHEDULE OF PATENT FEES: On each Cavest \$10 On each cack application for a Patent (17 years) \$15 On tizulng each original Patent \$20 On appeal to Examiners in Chief. 516 On appeal to Commissioner of Patents \$20 On appeal to Commissioner of Patents \$20 | | Wagon seat, J. U. Shuitz 139,071 Washing machine, A. Beaulien 130,107 Washing machine, A. Filkins 120,125 Washing machine, A. W. Jennings 110,128 Washing machine, J. Rizgsbee 130,003 Washing machine, G. W. Wageoner 130,003 Washing machine, W. S. Toung 120,000 Waterproofing canvas, etc., P. H. Morgan 129,001 Water wheel, Altell & Cole 128,572 Water wheel chute, J. Abell 128,978 Well, driven or bored, J. E. Morrison 139,003 Whip handle cap, G. A. Burr 129,005 Windmill, T. R. & A. C. Jackson 139,005 Windwill, T. R. & A. C. Jackson 139,007 Wind wheel, A. Haymond 139,107 Wrench, pipe, G. P. Moloney 129,128 Wrench, pipe, G. P. Moloney 129,127 SCHEDULE OF PATENT FEES: 0n each Caveat 516 On each Trade-Mark 925 On ting each application for a Patent (17 years) \$15 On ting each application for Patent \$20 On appeal to Examiner-in Chief 510 | # Adrertisements. Write for a Price List to J. H. JOHNSTON. DUNCHING DUNCHING For the Best and Cheapest Address THE SILLES AND PRESCES, MIDDLETOWN, CONN. # SCIENCE RECORD 1873. Every person who octives to be well informed concerning the Progress of the Arts and Sciences should have a copy that the Arts and Sciences should have a copy that and sciences should have a copy that and valuable Book, and should have a place in every flower. However, these, we have a place in the science of scienc MUNN & CO., PUBLISHERS, 37 Park Row, New York City. THE SCIENTIFIC AMERICAN will be sent one year and one copy of SCIENCE 12:CORD FOR 1875, on scelpt of \$4:50. 153.02 SCIENCE RECORD FOR 1872, uniform with the 138.983 above, Price St. Library bluding, 88.50. # BAIRD'S Chemists, MINERALOGISTS & ASSAYERS Hand Book of Chemistry, By Leopold Gmelin Translated by Heary Watts, B.A., F.C.S. Complete in Programms London (1818 to 1872). 815 ole of Reactions for Qualitative Chemical lalysis. By Henry B. Nason, Professor of Chemistry the Rensselaer Polytechnic Institute, Troy, N. Y. setrated by Colors. WOHLER'S FAMOUS Chemical Analysis. Hand Book of Mineral Analysis. BY FREDERICK WOHLER. yer's Guide: or, Practical Directions to yers, Miners, and Smelters, for the Tosts and ye, by Heat and by Wet Processes, for the Tosts and ye, by Heat and by Wet Processes, for the Ores of the principal Metals, of Gold and Silver Coins and ye, and of Cost, etc. By Oscar M. Lieber. 12mo., \$1.25. The above, or any of my Books, sent by mail, f postage, at the publication prices. new and enlarged CATALOGUE OF PRACTI-AND SCIENTIFIC BOOKS—% pages, 8vo.—will tree to any one who will furnish his address. HENRY CAREY BAIRD, INDUSTRIAL PUBLISHER, 406 WALNUT STREET, Philadelphia. ANTED IN ENGLAND—A First-class Practical Mechanical Engineer as Works Manu a Firm manufacturing inproved Englaces, Bot samenumps, and other Special Machinery. No on rience, salary required, ege, and enclose photograph (which will be returned forthwith) to W. P., Box 75, New York City. \$72.00 EACH WEEK. Agents wanted everywhere. Business strictly legitimate Particulars free. Address, J. Wonru & Co., St. Louis, Mo. NOTICE tors, it is also to the state of a power-press, as of which the said shaft is caused an which operates automatically wheel from the shaft at a certain THE STILES & PARKER PRESS CO., Middletown, Conn SCALE IN STEAM BOILERS TO INVENTORS * MANUFACTURERS U. S. Plano Co., 810 Broadway, N. Y. WOODBURY'S PATENT Planing and Matching FREY'S Frey, Sheckler & Co RICHARDSON, MERIAM & CO. Little Giant. To Quarriers of Marble, Slate, and Limestone: Our Gadder saves directly in stock and labor three times its cost in a year. It does the work of twenty men, saves half the channels, and reduces the business of cutting out building and ornamental stone to a science. For proof of, this, we refer to all be principal marble companies of Vermoni. SULLIVAN MACHINE COMPANY, Claremont, N. H. To Electro-Platers. For Sale. WE HAVE FOR SALE, at Reduced Prices. a large lot of Second Hand Machinery, among which are MILLING, STOCKING, NUT BORING, QUICK RUNNING, SMOOTH BORING MACHINES, PUNCH PRESS, FOUR SPINDLE DRILLING PRESSES, EIGHT FOOT WOOD PLANER, &c. &c. Send for Catalogue to SHARP'S RIFLE M'F'G COMPANY, Hartford, Conn. MANUFACTURERS, WORKERS AND H MONTHS ON THIAL FOR ONE DOLLAR IRON WORLD PUBLISHING CO., Pa TODD & RAFFERTY STEAM ENGINE, and Rollers for Sale-One 13a33 in Cylloder, with the H. P. Tobular Solier and fixtures complete, in perfect order—and one 11a34 in Cylinder, with 59 H.P. Tubula Boiler, Pump. Hester, &c. complete, has been used on
TO FOUNDERIES, Factories, Ropewalks &c.—For sale or lease, blocks of Lots, with bulkness raterfront, Low prices, easy terms. S.B.SCHIEFFELIN 5 East 26th Street, New York. WANTED—Work for Lathes, Milling and Screw Machines, Presses, &c. G. E. PARKER, M'Tg of light Machine work in Iron and Brass, 117 & 119 Mulberry Street, Newark, N. J. Machinery, Cold Rolled Shafting. Sturtevant Blowers. BUERK'S WATCHMAN'S TIME DE WOOD-WORKING MACHINERY GEN \$25 A DAY! Agents wanted, Business entirel new, G. G. Shaw, Biddleford, Me P ISTON guided from both ends; all workin parts guarded from dust; single or double pump cylinders, shafts, rocker arms, pistone, etc., entirely stee No. 42 Cliff st., New York. Niagara Steam Pump. CHAS. B. HARDICK, 23 Adams st., Brooklyn, N. Y. PORTABLE STEAM ENGINES, COMBIN Improved M ASON'S PATT FRICTION CLUTCHES are manufactured by Yolney W, Mason & Co., crovidence, R. I. Agents, L. B. BROOKS, & Cuiff street, sew York; TAPLIN, BICE & CO., Akron, Ohio. W OOD CARPETING. PARQUET AND INLAID FLOORS. Send stamp for Basic rated price list to the NATIONAL WOOD MAN'T'G CO. 942 Broadway, New York 12 Samples sent by mail for 20 cts., that retail quick fe OTIS' Machinery. NO. 348 BROADWAY, BEN YORK, CO., S PECIAL—For New List of "SPECIAL MED-to S. R. WELLS, 259 Broadway, New York." MACHINERY, Send for Circular, CHAR, PLACE Andrew's Patents. Noiscless, Friction Grooved, or Geared Holsters, suited to every want. Safety Store Elevators, Prevent Accident, Rope, Belt, and Engine break. Smoke-Baraing safety Bollers, Owellinging Engines, Double and Single, 1-2 to 169-Horse power, arrifagal Pumps, 100 to 100,000 Gallons arrifagal Pumps, 100 to 100,000 Gallons per Minute, Rest Pumps in the World, pass Mice, Sand, Gravel, Coal, Grain, etc., without lairn, Simple, Durable, and Economical, and for Circulars, WM. D. ANDREWS & REO, Gi Water Street, New York. NEW & IMPROVED PATTERNS.—MA-CHINISTS TOOLS, all sizes—at low prices. E. & E. J. GOULD, 10th, J. R. R. Ave., Newark, S. J. ROPER HOT AIR ENGINE COMPANY, TO NEW Church St., New Yor 1832. SCHENCE'S PATENT. 187 WOODWORTH PLANERS GEAR'S PATENT VARIETY MOULDING MACHINE MPROVED FOOT LATHES. SELLING Everywhere. N. H. BALDWIN, Lacopia, N.H. THE BOSS ts better, in every respect, than any other Drill Chuck. Will hold to 8. List price, \$7. One sample will be sent by mail. or result of \$5.50; and 10 WAYNESBORO' STEAM ENGINE and BOILER WORKS. WOOD-WORKING MACHINERY. WORKING CLASS MALE OR FEM IRON WORLD PUBLISHING CO., Puts WHALEN TURBINE, No risks to purchaser amphiet sent free. SETH WHALEN, Bullston Spa, N. Y DESIGNS and PLANS L.r. Houses of moderate costs \$1,20, post 1 ald. ORANGE JUDD & CO. Pennisures 35 Hootway, V.York. Send for Catalogue of all books on Architecture, Agriculture, Field Sports and the Horse ATHE CHUCKS—HORTON'S PATENT from 4 to 36 inches. Also for car wheels. Address THE E. HORTON & SON CO., Windsor Locks, Const. Improving the Harbor of San Francisco. \$\frac{5}{2}\$ to \$\frac{5}{2}\$ O per day! A roots wanted; All classes of sorthing peo-soric for use in Linds apara monomia or all in Linds (non alony tileg time. Particular free. Address 0. Sinners & On. For Linds, Ment # Aftertisemente. evertisements will be admitted on this page at the rate or \$1.00 per line for each insertion. Engravings may head alterthomests at the same rate per line by measurement, as the letter-press. For the best BELT HOOK for Rubber of Leather Belts BELT HOOK GREENLEAF WILSON, Lowell, Mass. HOUSTON'S PATENT TURBINE WATER WHEEL. Simplest, Strongest, Chengest, Best, In the test at Holyoke, in 1579, the Houston gave the THE STANDARD MAKE! THE TANITE CO., Strondsburg, Pa. # INDIANA STATE FAIR Industrial Exposition \$20,000 IN PREMIUMS OFFERED. SEC'Y STATE BOARD OF AGRICULTURE, Indianapolis, Ind FOREMAN WANTED - A thoroughly ENGINES and Bollers, New and 2nd Hand, Portable and Stationary, 5 to 50 Horse GOODWIN & WHITE, Off City, Pa ANUFACTURING PROPERTY FOR THAMPION SPRING MATTRESS-Th Machinist's Tools, LUCIUS W. POND, MANUFACTURER Worcester, Mass. Warerooms, & Liberty Street, New York. A. C. STEBBINS, Agent. EMERY WHEEL MACHINER Working Models And Experimental Machinery, Metal, or Wood, made to order by J.F. WERNER, 63 Center at., N. Y. B. A. Vervalen's Brick Machines # A. S. CAMERON & CO., ENGINEERS, Works, foot of East 200 street, New York City. Steam Pumps. Adapted to every possible duty. Send for a Price List. # AMERICAN Turbine Water Wheel MILLS & TEMPLE, Dayt # WIRE ROPE. JOHN A. ROEBLING'S SONS, MANUFACTURERS, TRENTON, N. J. FOR Inclined Planes, Standing Ship Rigging # WIRE ROPE # P. BLAISDELL & CO., Patent Drill Presses, with Quick Return Motion, In the Market, also other Machinist Tools. SERD FOR COTS. WORGESTER, MASS MONEY made with Stencil and Key and samples free. E. M. DOUGLASS, Bratt REYNOLDS & CO. Screws & Bolts STEEL & IRON SET SCREWS Dispense with Blowers and Save your Fuel. L. B. TUPPER'S FURNACE GRATE BAR. # DEDERER FRANCES - SESSES SES So constructed as to insure a great causing a saving of fuel and great dural lity. No alteration of furnace required. Send for illustrated pamphle L. B. TUPPER, 120 West Street, New York City. ### BOILERS PIPES COVERED AND ASBESTOS FELTING COMPANY, BLAKE'S STONE AND ORE BREAKER. For reducing to fragments all kinds of hard and brittle substances, such as ROCKS, ORES, MINERALS, AND DRUGS. Extensively used for making Concrete for McAdam Ronds, Ballast for Rai The Blake Crusher Co., \ NEW YORK AGENCY. Branch Salesrooms, 1:0 & 172 Centre St. N. Y. ASBESTOS Wanted in Crude State-any quantity. Address ROSENTHAL & SHUSTER, Chatham Mills, Philadelphia, Pa. # NEAFIE & LEVY, PENN WORKS, MARINE ENGINES, BOILERS AND BUILDERS OF COMPOUND ENGINES, PHILADELPHIA, PA. KIDDER'S PASTILES—A Sure Relief for Asthma. STOWELL& CO. Charlestown, Mass # AVELING&PORTER. ROCHESTER, ENGLAND. STEAM ROAD ROLLERS, STEAM PLOWS (Direct traction), TRAMWAY ENGINES. LOCOMOTIVE CRANE ENGINES, PORTABLE ENGINES. Agent-W. C. Oastler, JOYE'S MILL FURNISHING WORKS ROSEWOOD, WALNUT, WHITE HOLLY, SATIN WOOD, HUNGARIAN ASH, AND ALL KINDS HARD WOOD, IN LOGS, PLANK, BOARDS, AND VENEERS. GEO. W. READ & CO., MIll and Yard, 186 to 200 Lewis St., cor. 6th St., E Orders by mail promptly and faithfully execute Enclose Sc. stamp for Catalogue and Frice List. # WARLELL AND SAMS LAND. TELEPTICE PRINTER GOSSONS R. POD. PRINTER GOSSONS MORRIS, TASKER & CO., AMERICAN CHARCOAL IRON WROUGHT-IRON TUBES AND FITTINGS, FOR GAS, STEAM WATER, AND OIL. 13 Steam and Gas Fitters' Supplies, Machinery for Coal Gas Works, &c. dc. NO. 15 GOLD ST., NEW YORK. PAGE'S Water Flame Coal Lime Kiln, with coal or wood. No. I Soft White Lime or Cement, with use of water. C.D. PAGE, Patentee, Rochester, N.Y. # Underground Treasures. HOW AND WHERE TO FIND THEM. OBTON.A.M., Prof. of Nat. Hist. in Vassar Cok for Land Holders, Furmers, Mechanics, Miners and Laborers, and all however unset them plainly how to seek for Mineral Tree the owner all the minerals in the Chron could be nearly all the minerals in the Chron could be sent by mail, post paid, upon receipt of Circulars free. DUSTIN, GILMAN & CO., Hartford, Cenn. R ANSOM SYPHON CONDENSER perfects # "The Harrison Boiler." # NEW YORK SAFETY STEAM POWER CO. 30 CORTLANDT-ST., NEW YORK. SUPERIOR STEAM ENGINES AND BOILERS, # SUPER-HEATERS fuel, and supply DRY steam. East bottler. HENRY W. BULKLEY Se Liberty Pyrometers. For testing Ovens, Bol furnac BUILDERS SEND FOR BOOK CATALO TO BE THE BEST EVER INVENTED RON PLANERS, ENGINE LATHES on hand, and finishing. For sale low. For Descrip-n and Price address NEW HAVEN MANUFACTUR-G CO. New Haven, Conn. # PORTLAND CEMENT, JAMES BRAND, 35 Cliff St., N A Practical Treatise on Cement furnished for 25 LUBRICATORS LUBRICATOR JAMES LEFFEL & CO. # SCIENTIFIC AMERICAN One copy, one year One copy, six months One copy, four months 1.30 One copy of Scientific American for one year, and one copy of Scientific American for one year, and one copy of Scientific American for one year, and one copy of "Scientific American for one year, and one copy of "Scientific American for one year, and one copy of "Scientific American for one year, and one copy of "Scientific American for one year, and the postage on the Scientific American is five cents per quarter, payable at the office where received. Canada subscribers must remit, with subscription, 25 cents exim to pay postage, Address all letters and make all Post Office orders or MUNN & CO., 37 PARK ROW NEW YORF THE "Scientific American" is printed with CHAS. ENEU JOHNSON & CO. % INK. Tenth and Lombard sta., Philadelphia and 10 Gold st. New York.