A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. Vol. XXIV,--No. 23. NEW YORK, JUNE 3, 1871. Machine for Labeling Fruit and other Cans. | bles, meats, coffee, spices, and condensed milk, and the large | largest size cans. The power, required to run it, is hardly Within the past ten years the manufacture of cans for the saving effected is easily to be perceived. Then view the preservation of fruit and vegetables, and the packing of great competition in the market, the increasing demand, and to run by hand if desired. oysters, for those sections where the delicious bivalves cannot the absolute necessity of production at decreased rates, and be enjoyed in their native freshness, has increased to such it is evident that this machine is one of great value to manan extent as to be one of the great staple industries of the ufacturers and of approximate benefit to the general public. country. Thousands who, amid the snows of winter, eat the who crosses the vast and almost sterile plains of the heart of our continent, to the miner in the wilds of Idaho, or the Arctic explorer. But few of us in our daily walk to or from the great center of bustle and money getting have not paused to admire the gay display with which the tasty grocer adorns his window. The rich, many colored labels contrast prettily with the bright silvery tin, and with a dainty background of viands brought from all parts of the earth to satiate the cravings of appetite or gratify luxurious taste. It would be beyond our space as well as our intention to enumerate the vast establishments of East, West, or South, or of our own city, to give statistics of the immense business they do. the ground they cover, and the hands they employ to supply the demand for fruits and vege tables out of their natural season. So great has this de- | The inventor has had a long experience in one of the larg- | ments, or who hangs his clothes against it. The superior which cheapens their I roduction is a public benefit, even to careful effort, brought it to perfection. the teeming thousands who crowd the tenement houses of The machine, of which we present an engraving this week, is designed to save the labor of labeling cans by hand, as heretofore performed. In all manufactures where cans or bottles are used, custom and a species of advertising has necessitated the use of labels. No sane business man looking to a sure sale for his goods, would now-a-days think of sending them out without labels. We need not argue the necesuseful, they must be affixed to the cans, and the most rapid means of accomplishing that end of course tends to cheapen the cost of production. An active, vigorous hand cannot paste on bottles an average of more than 800 labels per day. If we reckon this hand to cost \$5 per week, we shall have a cost of about one cent for every ten cans, or 14.4 cents The machine to which we call attention will, it is claimed, do ten times as much with two girls to attend it. Thus two girls, with the machine, will label 8,000 cans or bottles per day of ten hours; or 48,000 per week, at a cost of \$10, while the best that ten girls can average in this same time is 48,000 at a cost of \$50; a clear saving to the canner, by the use of the machine, of \$40 per week. This saving enables him to sell his product at least 10 cents per gross cheaper. To the is stated, been running with perfect satisfaction for over for two coats on a large room, say one eighteen feet square; general reader this would seem a small matter, but when it four months in the paint factory of Messrs. C. T. Raynolds and for good work two coats should always be applied. A is recollected that Baltimore alone, last year, put up 40,000, & Co. It takes in four sizes of cans, and has labeled 9,000 little care in manipulation will produce by kalsomining a 000 cans of oysters, the sum total of saving becomes immense. in 10 hours. Then add to this the large number of cans of fruits, vegeta- Of course a machine can be made adjustable to the experienced operator. But it is not only in things edible that this machine be succulent corn or the aromatic tomato, with a sort of matter- comes of use. Paints, oils, varnishes, tobacco, and, in short, of-course feeling, have no idea what a blessing this system every kind of round tin or glassware that has to be labeled has been to the weary traveler on the ocean's bosom, to him comes within the scope of its operation. a tenth of a horse power, and it might be so arranged as Fig. 1 is a perspective view of the machine when at work machine can be understood. The can is fed in at the chute, A, Fig. 2, and is taken up by the revolving star, B; it is there retained in place long enough to receive the label from the gumming wings, C. The cam, D, gives downward motion to the cross-head, E, and thence to the arms, F F, with the smoothing rollers attached thereto. The can is then discharged by a partial revolution of the star, B, on to the chute, J, as shown in Fig. 1. Power is applied at G The finger, H, holds the label in place while the gumming wings return for an other label. The patent for this machine has been granted to Edward Tyrrell, assignor to himself and L. Richardson. Rights to use or manu facture this machine, in States or counties, will be sold. For further particulars, address the patentee at 281 and 295 Plymouth St., Brooklyn, N. Y. TYRRELL'S MACHINE FOR LABELING FRUIT AND OTHER CANS. mand become, that in a commercial and sanitary point of est paint factories in this country. In times of busy trade smoothness and glaze of a good kalsomined wall is a great view, every improvement in their preparation for market he saw the value and need of such a machine, and after The machine from which our illustration is taken has, it #### Kalsomining. The rough unfinished appearance of a white or yellow washed wall is not its most disagreeable peculiarity. It perpetually gives off its dirt, and its own fabric in powder, to any one who brushes it with his gar- improvement to the style of the interior of a house; and if well made, such a surface is suitable to the best rooms of a good house, and is so cheap as to be within the means of the poorest. It requires care and judgment in the selection of the not expensive materials, and above all, capability and skill in applying it to the wall. The plaster is made of Paris white, a fine powder produced by the pulverization and elutriation of common chalk, mixed with fine, clear white glue, dissolved in water. The Paris white costs about three cents a pound, but the wandering operatives who apply for jobs ask a much higher price for it. of glue in a quart of warm water for twenty or twenty-four hours; then a pint of water should be added; and the vessel (of tin or other thin metal) should be placed in a kettle of hot water over a fire, the glue being agitated till it is thoroughly dissolved and the solution quite clear. Put five or six pounds of powdered Paris white into a large bucket, and add hot water sufficient for the mixture to be of the consistency of cream. Then mix the glue water with it, stir it well, and paint the walls with the mixture with the usual whitewash brush. It is of the utmost importance that the kalsomining mixture be spread very smoothly, and to secure this, a little hot water must be added, if the stuff be too thick for easy and level application. The quantities given above are sufficient neat and handsome effect, even in the hands of the most in- #### The Monbite Stone. In the dreary and almost inaccessible region that lies be tween the mountains of Moab and Mount Pisgah, on the eastern shore of the Dead Sea, and extending to the Arabian Desert, there was, up to about three years since, a curious relic of a people long past away. A column of stone, forty-one inches in hight, and rather more than twenty in each of its other two dimensions, covered with an inscription of thirtyfour lines, containing over a thousand letters and figures in the ancient Hebrew tongue; such was the Moubite Stone This inscription is stated by some scholars to be the oldest writing extant, and if we consider the hieroglyphics of Egypt to be drawings, and not writings, the opinion may be a just one; although the inscribed monuments of Egypt give most distinct and intelligible accounts of the lives and man- ners of their times, by means of pictorial representations. The stone was discovered by the Rev. F. A. Klein, a member of the German community at Jerusalem, on August 19, 1868. The existence of the stone became known at about the same time, to M. Ganneau, the French Consul at Jerusalem, and to Captain Warren, who is travelling over all parts of the Holy Land, for the Palestine Exploration Association, of England. Each of these three gentlemen was anxious to obtain the stone to be forwarded to Berlin, Paris, or London but the delay caused by the rapacity of the Arab Sheikhs who owned it, was fatal to the success of either. The Arabs regarded it with a superstitious reverence, and before it could be removed, broke it in pieces, by heating and then throwing cold water on it. The fragments were distributed through out the neighborhood as charms. Fortunately for history and science, however, M. Ganneau obtained a paper impression, of the inscription, but this suffered partial destruction, being torn into seven pieces in a scuille, by the natives who had watched M. Ganneau at the work. The east of the inscription was not irreparably dam aged, and it has been restored sufficiently to allow copies to be taken. Moreover, attempts to collate the pieces of the stone itself, are now being made; and it is to be hoped that this can be done, and the invaluable contribution to history, philology, and archeology given to the world. The inscription on the stone shows that twenty-two letters were in use in the ancient Hebrew tongue, and this number coincides with the Hebrew alphabet used in the time of David,
as will be seen on reference to Psalm CXIX. The message, travelling over such a tract of history, tells that the stone was erected by Mesha, king of Moab, in commemoration of the achievement of independence by his people, they having thrown off the yoke of the Israelitish rulers, a'ter a subjection of forty years. This revolt was fostered, and per haps created, by injudicious and tyrannical taxation, a cause of revolution which has been notably exemplified in modern times. The land was reconquered by Omri, after a period of four years. Omri is stated by the inscription to have been an usurper to the throne of Israel, but the Second Book of Kings, which gives an account of the revolt under Mesha, does not mention him. The Scriptural accounts, as well as the inscription, concur in pointing to the year 892 B.C., as the probable date of the stone. Thus is laid before our eyes a relic of the world as it was just after the deaths of Ahab and Jezebel, before Elijah the Tishbite was translated, before the carrying away into Babylon, and before the war with Pharaoh-Necho. It was carved and set up three hundred years before Rome was a settled territory, and was a thousand years old when Jerusalem was destroyed by Titus Vespasian. By modern arts, its strange me-sage may be placed beyond the possibility of destruction, and be preserved for the satisfaction of the curious for twenty-seven other centuries, What changes it may see in that time, no one can predict. That the cause of progress, enlightenment, and development may go on during its future as through its past, our readers will concur with us in trusting. In connection with this subject, we may mention that it is proposed to send to the Holy Land, an exploring expedition from this country. Much has been already done by Dr. Robinson and others of our countrymen, as well as by Captain Warren, before mentioned; and any search that may be prosecuted in this most interesting of all historical lands will certainly be rewarded by valuable discoveries. A meeting was held last week at Dr. Crosby's church, on Fourth Avenue, New York, which was largely attended, and at which a subscription was commenced. A copy of the inscription on the Moabite stone was exhibited at the meeting, and was studied with much interest. For the sake of all ancient and modern science, we wish the movement every success. #### A Gas Well at Buffalo, N. Y The fact that a large and steady flow of gas had been obtained by boring into the earth, at various points on the lake Erie shore, led the Buffalo Gas Company to put down a well in that city in the expectation of reaching gas. The work was begun on the first of February, and is now completed. The first vein of gas was struck at the depth of 318 feet, and the gas fissures gave out their contents at nearly regular distances of twenty feet thereafter. At the depth of 630 feet, the salt water was thrown out of the well with such violence as to show there was a strong impelling force beneath it The water was then pumped out and the well was tubed, when the gas began to flow freely. The tube, a two inch one was lately put in, and the flow has been regular from that time, in quantity sufficient to furnish fuel for a large manufacturing establishment. At the gas house, the natural gas did the work of the ordinary fuel for the furnaces, small quantities of coke being supplied in addition now and then. In the retort house, its illuminating powers were tested inch per foot in hight. By this means, the roof can be carbined, when the course and force of the wind were unusually through about twenty pipes. It did not work well through ried in any desired direction, the distance of half an inch or changeable. the ordinary burners; but these being removed and full vent two inches. If the screws are always set perpendicularly allowed to it, it gave all the light necessary, as a clear, steady light is not essential for the work to be done there The light is not bright and clear like that from coal gas, and it showed a liability to disturbance by the action of the atmosphere. The company intend to have the value of the gas thoroughly tested, and have engaged the services of Prof. Hadley to make a scientific investigation of the matter. Cleveland. At Painesville, Ohio, between Erie and Cleveland, a well 550 feet deep is yielding an enormous volume of gas. This well is located about two miles from the lake, #### Chinese Ornaments or Curiosities. The patient and often ingenious workmen of China produce many articles of ornament which have a deservedly high commercial value. Our countryman, Mr. Pumpelly, states that one of the most fertile sources of amusement to the stranger in Pekin, is the walk through the streets in which are collected the curiosity stores and lapidary shops. The show cases are filled with ornaments; piles of porcelain vases of every shape; objects in bronze; étagères of heavily carved vermilion lacker ware, loaded with vases; ornaments which all the precious stones known to us are represented, excepting only the diamond, emerald, and opal. Nor, says our traveller, are their prices at all modest; five hundred to two thousand dollars is by no means an uncommon price for porcelain and cloisonnées vases in which beauty and moderate age are combined; it is only the productions of the present day that are cheap. Among other curiosities which engage the attention of foreigners are horn, glass, silk, and paper lanterns, some of which are very beautiful; also bowls, cups, rings, etc., cut from gems and stones; carved work in horn, stone, roots, metal, and wood. Hardly a ship leaves the country, says Mr. Williams, in his admirable work on the commerce of China, without some of these curiosities. #### Increasing the Hight of Rooms. It is frequently desirable to raise the roof of a dwelling house a few feet higher than it was originally built, for the purpose of making sleeping rooms in the attic story, or to render rooms that are quite too low, more pleasant and airy. But many builders dare not attempt such a job, unless they take the roof entirely down, for fear that they may get a dead-fall trap on stilts, when they have lifted the roof from its original foundation. It will be found a comparatively easy job to raise the roof of any ordinary building one foot or six feet, with perfect safety, provided a workman will operate understandingly. Let us assume, for example, that it is desired to raise the entire roof of a dwelling house, or the roof of one wing, which is thirty feet long and twenty feet wide. If the lower ends of the rafters rest on plates six inches square, or larger, it will be better to elevate the plates with the roof, by cutting openings through the side walls about six feet from each end, to receive sticks of timber extending across the building beneath the plates. If the building has been erected with a balloon frame, there should be three sticks of square timber, one near each end, and one near the middle. Let these timbers be blocked up close to the under side of the plates. The ends of these sticks need not extend beyond the outside of the plates, so as to interfere with the cornice. If there are no collar leaves secured to soluble glass, to be again decomposed by the Portland cement, the rafters, the plates must be fastened, temporarily, to the The whole of the caustic soda does not appear to be liberated timbers, to prevent their spreading as soon as the roof is lifted. The next step will be to set a screw near the end of in that way all of the soda is absorbed. each stick of timber, on a foundation that will not topple nor sway as soon as it receives the superincumbent pressure of the roof. If strong iron jack screws cannot be obtained conveniently, three two-inch wooden bench screws will elevate one side of a large or small roof with perfect safety. The writer has frequently lifted one corner of a thirty by forty foot barn with a pair of two and one eighth inch wooden screws. As soon as the timbers are secured in their proper places, and the screws are set to lift one side, remove a board just below the cornice, and saw off all the studs on both sides of the building. Let all the studs at the gable end be sawn in two at a point nearly in a horizontal line with the plates, and let the gable end walls and window rise bodily with the roof. Now, let the screws be all worked together, blocking up every inch as fast as the roof rises. After one side has been elevated six inches, remove the screws to the opposite side, and elevate it about one foot, keeping the timbers beneath the plates and well blocked, as fast as the roof rises. In case there should be a chimney resting on a closet, or screws are accustomed to charge for the use of a set of screws while performing such a job. If the screws are placed on the foundation so as to elevate the roof perpendicularly, by raising one side six inches, then the opposite side one foot, and after this, lifting each side alternately one foot, there will be no difficulty in carrying up the roof in a perpendicular direction, to any desired hight, provided the screws and the blocking are supported by a broad foundation of blocks that will which is generally overlooked. A body, floating in the air. not rock. Before removing the screws, see that the blocking of any shape, must move in the direction and with the venot set perpendicularly on the opposite side. As the roof is lifted, let a plumb line be frequently employed to determine vided with sails, rudders, or other governing apparatus, is perpendicular line. In case the entire roof is one inch, or center of gravity, than to be subject to the control of a foot higher than the opposite side and be blocked up; then flexible rod, which, he argues, would be less subject to the set the screws under the opposite side inclining about one rotating power of the wind, and be more amenable to the the roof will rise in the right direction. If, for example, the plates
beneath the roof to be raised were four feet from the chamber floor, in lieu of square blocks, make a strong platform for each screw to rest on, by placing four pieces of scantling, two feet long, on the ends, for corner posts, and nailing stays from the top of one to the lower end of another. Then, let the scantling stand on strong planks resting on the The subterranean gas is found all the way from Buffalo to floor. A crib can then be carried up, on the tops of the corner posts, with pieces of plank, or studs or boards, and the foundation will not topple. As soon as the roof has been elevated to the desired hight on one side, let the space in the side wall be filled by nailing pieces of studs to the sides of the pieces attached to the plates, and the sides of the studs beneath. Then, lift the opposite side of the roof, and secure pieces of studs to the sides of any timbers that have been sawn in two. If studs, when lapped together, be nailed firmly, the side wall will be about as strong as if the stude were of one entire piece of timber. Should there be partitions extending from the floor to the roof, tear away the base boards and saw off the stude near the floor; and let another screw be employed to carry up such portions of the structure, or let a self-acting lever, with a weight at the farther end, hold the partition wall up to the desired position as the roof is rising .- Technologist. #### RANSOME ARTIFICIAL STONE. F. Ransome originally prepared his artificial stone by mak ing an intimate mixture of sand, pulverized carbonate of lime, and silicate of soda (soluble glass), and treating the mass with a solution of chloride of calcium, by which an interchange of elements took place, resulting in the fermentation of silicate of lime, which became hard, and chloride of sodium, which could be dissolved out. The silicate of lime served to combine the sand to a hard and permanent stone. The washing out of the chloride of sodium was regarded as the worst feature of the operation; and if it were neglected, an efflorescence of common salt was formed, which destroyed the appearance, if not the quality of the stone The process of dissolving the salt was facilitated by following Bessemer's suggestion of applying atmospheric pressure, by exhausting the air from the vessel containing it, but under the most favorable conditions it was annoying and expensive. In consequence of this, Ransome sought to modify his invention so as to dispense with the chloride of calcium solution; and after numerous experiments, arrived at the following mixture. Out of a mixture of common sand, Portland cement, ground carbonate of lime, and some silica which is soluble in caustic soda at ordinary temperature, he prepares, with soluble glass, a mass that remains plastic long enough to be run into molds, and gradually changes to a hard stone, which resists the action of heat and cold, is impervious to water, and in process of time increases in hardness and durability. Ransome explains the chemical reaction in the following way. If Portland cement, which consists of silicate of alumina and lime, be mixed with soluble sods, the latter is decomposed in such a way that its silica forms silicate of lime with the lime of the cement, while caustic soda is liberated; this latter, however, at once re-unites with the soluble silica placed there for the purpose of producing each time, but a silicate of lime and soda is produced, and By the addition of fragments of quartz and oxide of iron, artificial granite can be produced, and also, in another way imitation of marble, both of which are very hard, and admit of a fine polish; and have the advantage of the natural stone in being cast in molds and patterns of any forms. #### Influence of Female Magnetism on the Compass. A commander in the Royal mail service found his steamer some thirty miles out of her course. He was sorely troubled, and could not account for the local attraction that had sent him so far out of the way. Instruments and calculations appeared equally faultless. Sorely troubled, from having passed a sleepless, watchful night, the captain went on deck after breakfast. Seeing a lady sitting (as was her custom) and working near the binnacle, it occurred to him that probably the scissors were resting on the ledge of it. Detecting noth ing of the sort, and bent on closer investigation, he discovered that her chair had an iron frame. It also, quite reasonon the collar beams supported by a partition, procure another ably, flashed across him that the lady's ample crinoline was wooden screw, and set it beneath the chimney. Four wooden extended by steel hoops. So, mustering all his faculties, he exclaimed, with as much forgiveness and as little reproach in his tones as possible, "Madam, you have, by your local attraction, drawn my ship some forty miles from her course!" #### Aeronautic Machine. A correspondent sends us a suggestion for a governable aeronautic machine, and prefaces his description by pointing out an important fact in the science of ballooning, is so secure that the roof cannot slip, in case the screws are locity of the wind that propels it, the power being indescribably uncertain and various; and thus a balloon, prowhether it is not being carried in any direction away from a more likely to turn on an axis perpendicular through its more, too far to the north, let the north side be lifted one guide. His idea is to have two balloons, joined by an in- #### The Strains on Ships at Sea. ships undergo at sea, was read on February 9th, at the Royal purposes, but also for tramways in large cities; and he says State. The country is not so much of a desert as is Nevada, Society, by Mr. E. J. Reed, C. B., late Chief Constructor of that, where space is very valuable, a horse or mule on only and agriculture among the Mormons is the principal occuthe Navy. The author, after pointing out that little or no practical progress has been made on this subject since the and other important places, the rail might for a short disearly part of the present century, proceeded to state that the introduction of steam navigation and of iron and steel as ship building materials, had rendered a thorough examination of it extremely necessary, and that he had consequently selected four ships as types of the various descriptions of modern vessels, namely-Her Majesty's yacht Victoria and Albert, as a type of long, fine-lined, lightly built ships, with great weight of engines and boilers in the middle; the Minotaur, as a type of long, fine-lined ships, with great weights distributed along their entire length; the Bellerophon, as a representative of short, stoutly built ships, with weights more concentrated; and the Andacious, as a model of ships with extremely con- The smooth water strains of all these ships were illustrated by numerous diagrams embodying the results of various calculations, and the effects of placing such ships among waves were then no less fully investigated. The great bulk of the paper consisted of detailed calculations too long to insert, but some of the facts and figures deduced were very striking. It was shown, for example, that a ship like the Minotaur, floating among waves 400 feet long and 25 feet high, from hollow to crest, which have a time of transit of about eight and three fourths seconds, passed in half that time from a bending or "moment" of 140,000 foot tuns, tending to break her in two by the drooping of the ends, to a reverse strain of 74,000 foot tuns, so that fifteen times per minute a "wave of strain," as Mr. Reed designated it, having these enormous quantities for its positive and negative amounts, sweeps through the fabric of her hull. The Victoria and Albert yacht has to undergo, in like manner, strains which tend to break her downwards at the ends with a force of 16,400 foot tuns, and in less than four seconds encounters a strain tending to break her downwards at the middle, and let her engines and boilers fall through her, equal to nearly double this amount, or 31,000 foot tuns. It is remarkable that this change of strain in this lightly built hull is proportionately greater than that of either of the ironclads. The Bellerophon's maximum strains in waves, similarly calculated, were 43,600 foot tuns, and 48,800 foot tuns, respectively. In illustrating the influence which rapid changes of strain exert upon structures, the author referred to the experiments of Sir W. Fairbairn, who has shown that the joints of an iron riveted beam broke under the action of a rapidly alternating strain, although it was only one third in amount of what the beam would sustain at rest. Mr. Reed stated that his investigations had shown many of the general principles laid down by former investigators, who had dealt with very different forms of ships, to be erroneous; and, in particular, opposed the very common notion that there is a compensating action between the strains of, and the wave actions exerted upon, very long fine-lined vessels. He further stated that while the weakness exhibited by many modern ships had induced him to enter upon these investigations, the result of them had been to convince him that calculations which had hitherto been neglected were becoming daily more and more necessary, especially as the length of steamships and the lightness of their construction in iron and steel were being very rapidly and simultaneously de- #### A Single Rail Tramway. In thinly populated and mountainous countries, and especially in many parts of Turkey, the want of roads for internal communication is the great difficulty in the way of national progress. The present need, however, is to provide a means of traffic not much in excess of the actual or probable demand, and suited to the wants of a country, in which railroads are impossible from their cost, in which roads are use less because the natives find that carriages do not pay, and in which there can be no canals, because water will not run up hill.
In the face of these conditions, Mr. J. L. Haddan, C. E., has devised a single rail tramway for conveyances, of mines of White Pine. which he gives the following description Imagine a bicycle let into a longitudinal aperture in the center of the bottom of a cart, and the cart nearly touching the ground, so that only about six inches of the wheels would tion will not set out in full strength for a month yet. Stragbe visible; next, a kind of balancing pole run through the glers who have reached the goal write back that they can do sides of the cart at right angles to the single rail on which nothing on account of the snow-a fact of which they were the bicycle is to run. The two ends of the pole are to pro- as well informed by starting as they are now. Americans pitch when lime has been added, and as a small sample tried ject about three feet on either side of the cart, and rest upon, are so fearful, always, that some other Americans, or some and be harnessed to, the backs of two mules. The animals other people, will "get ahead" of them! They must all be having melted pitch adhering to the shoes of the passenger. will thus be one at each side of the load, instead of being in first, on the ground—first on board of a ferry boat, railros front, in the ordinary way. It would be impossible for the car, and everywhere else, even at the risk of life. eart to turn over, because, in order to do so, it would have to force one mule to the ground and to lift the other in the air; and, moreover, as its floor would only be six inches above the rail, an overtip would be of no account. All the weight in the animals, having no load on their backs, would be able to 49 and Spring of 50," and have been in every mining "rush" exert considerable traction power. Mr. Haddan thinks it an incidental advantage, that, with such a tramway, the muleteers would be compelled to keep the appointed way, instead of leaving it, as they now do, by side tracks that enable them to avoid toll bars; but, at the same time, he proposes to give the wheels broad double flanges, so that in case of need the carts would run upon any good road. He states that responsible contractors are prepared to lay his single line, with 30 lb. rails and De Bergne's pot sleepers, at a cost of £450 per mile, all sidings included. one side of the cart would be sufficient. In towns, on bridges, tance be dispensed with; and passenger vehicles should be fitted with small friction wheels on either side, so that, if a cal character of Utah, as a State and as a social community. horse should fall down, the balance of the carriage would remain undisturbed. #### How Palm Leaf Hats are Made. In America, the only places where the leaf of the palm tree is manufactured into wearing apparel are in Massachusetts. Amherst, in Hampshire County, Palmer, in Hampden, and Barre and Fitchburgh, in Worcester, are each the site of manufactories, but of these (says the Boston Advertiser) the first named is the largest in buildings, business, and completeness of work. Several of the others perform only a part of the whole course of operations necessary to fit the goods for market. From Cuba the raw leaf is shipped to New London, Connecticut, in bunches of twenty five leaves each, and the stock is unloaded and placed on cars which stop at the door of the bleaching house. As delivered, the leaf is from four to five feet long. This, standing on the stock end, is closely packed in the bleaching rooms, where it is kept sixteen days. Brim stone is used to whiten the leaf. The rooms are closed airtight and the brimstone burnt in pans standing in the room. When bleached to the requisite whiteness, the next process the leaf undergoes is splitting. Nearly a third of all that passes the splitters is absolutely worthless for use here. Till recently it was thrown away; but since paper manufacturers have been straitened for material, this palm leaf has been found to make good paper. Fifty dollars a ton are paid for it at the paper mills. After the straw is now ready to be worked into hats, all the work must be done by hand. In all the New England States, except Rhode Island, are agents of the firm who send the leaf out into the country among the wives and daughters of the farmers, by whom it is braided into hats and woven into webs for shaker hoods. Large teams are constantly passing over the rugged hills, carrying material to be braided, or the work that has been finished. The number of people who find employment in this business is very great. Little children are kept at it, for it is light work, and a nimble fingered girl of ten or twelve can earn as much in a day as an adult woman. The pay for the work is too small to make even decent wages, if the worker be not of remarkable deftness of hand, but it is, with many, a work of odd moments which would otherwise be wasted, so the frugal housewife will include in her day's work a "stent" of so much braiding to be done. In some parts of the country, chair bottoming is practiced in the same way. Country merchants frequently take the leaf and put it out in their neighborhoods They are satisfied if no profit be made on the braiding, for they pay for it from their stores, and make the increase of business thus secured afford them a fair profit. Some, how. ever, make a profit at both ends, and in any case the worker's recompense is a mere pittance #### The Wealth in our Western Veins. A White Pine correspondent of the Chicago Tribune has a few words on new discoveries and the ways of old miners. Some new discoveries of fine milling ore have been made upon the eastern slope of White Pine Mountain, opposite Treasure Hill. Its existence in that locality had not previously been suspected. The assays reach up into the hundreds. One of the veins is three feet in width. It has been named "The Narrow Gage." Meantime, our neighboring districts of Eureka and Mineral Hill are excited over the discovery of free ore, in mines hitherto yielding only large quanties of base metal. The base ore, say the people of Eureka, almost entirely disappears, and the free ore comes in instead, This will necessitate the erection of mills, and the discontinuance of some of the smelting furnaces. A similar phenomenon to the above has been observed in one or two of the base The depth of the snow, and threatening prospect of more still deter many excited people from venturing forth in search of the new "land of promise" in Utah. The emigra- It does seem singular that these periodical mining excitments should startle and start, upon a weary tramp, old and experienced California miners, as well as the simple minded "greenhorns" just out from "the States." But such is the the eart, if evenly distributed, would bear upon the rail, and fact. Men who emigrated to the golden land in the "Fall of since, are now rushing into Rush Valley, and the Big and Little Cottonwood Canyons, as if Dame Fortune had actually contracted at last to fulfil their dreams in the "promised land" of the Mormons. Some reflecting persons will not go thither with a "rush," however, even at the risk of losing the finish. This is good enough for parish business, and is, more-"cream" of the speculation in town lots, and the chance of representing the State of Utah in Congress. They remember | London and elsewhere, will allow that it is very nearly all the early days of White Pine. But Utah will not long be the sole inheritance of a close community of fanatics and defunct politicians. People from Mr. Haddan does not consider that the utility of his inven- all parts of the Union will soon emigrate thither, attracted into the hands of the University of Kentucky. tion will be limited by the precise conditions that first called | by the glitter of the precious metals, and the large majority A paper embodying an investigation of the strains which for it. He not only suggests its employment for military of persons will be of a class that will make Utah a great pation. As it is said that employment has a tendency to promote honesty in its followers, we may hope that the leaven of that almost extinct virtue will pervade the future politi- #### Underground Explorations --- Visit to a Missouri Cave. A western writer who has recently visited a cave in nearly the highest point of the Ozark Mountains, Green county, Mo., and about six miles from the city of Springfield, thus describes it: "This cave was recently discovered by a hunter, whose dog chased a fox into it. The entrance was small, but has been so enlarged that a horse might be ridden in. In beauty it far exceeds anything of the kind of which the writer has any knowledge. As you enter you will observe hundreds of bushels of sweet potatoes, apparently as fresh as when first taken from the ground, placed in the cave last fall. Next in view will be seen, when brilliantly lighted, which the proprietor always does for his patrons, a vast profusion of splendid stalactites and stalagmites, in some cases meeting; and with a little help of the imagination, one can see statuary of rare beauty, variety, and of vast proportions, as well as dogs, cats, sheep, horses, lions and hooded women, "The ceiling is completely decorated for a very long distance from the entrance with stalactites, resembling in many cases vast icicles, beautified by an endless profusion of small er ones, and what have the appearance of small sea shells and fish. When the stalactites and stalagmites meet, as the formations often do, they form in some places columns of vast proportions, one of which I think is 18 feet in height, and 7 to 9 in diameter. Apparently some of these columns are beautifully draped in snowy white, resembling cloak or mantle, of beautiful, heavy woolen goods, hanging in graceful folds from the shoulders of a tall man. All the formations are white, except where they have been soiled by handling or the smoke of lamps Of course they are carbonate of lime found only in limestone countries, and to the geologist it
must be an interesting study to estimate the vast time of their formation. It is impossible to describe the varieties of these lime formations. To the traveler, a visit I think will richly pay. It is proposed to sell and deliver for \$30,000, one of these columns to the Central Park Committee, New York. I believe the full extent of the cave has never been explored. In southwest Missouri are many other caves, from south of which large streams of excellent water run, in quantities sufficient for manufacturing purposes. #### Asphalting Garden Walks and Street Pavements. Gas tar is not soluble in water. Make a note of this, for it is the chief point in asphalt works-roofs, tanks, walks, roads, and the like. As well might you attempt to mix tallow with water as gas tar with water, and hence the importance of all articles being dry, that have to be united with gas tar. Now, when you get lime from the kiln (says a writer in the Gardeners' Chronicle), and slack it nicely by adding a large amount of cold water to cold stones of lime, the mixture will neither be cold nor wet, as one would think it ought to be, but fiery hot and apparently dry; yet there is no disputing the fact that into this dry powder you certainly did pour real water by the gallon, and it must be there now in some shape. Chemists tell us that, when fluids assume the solid form, heat is evolved, and although we may not recog nize the presence of water, the gas tar will; so that in allcases where slaked lime is mixed with gas tar, it is a grave error, for water is there, and "gas tar is not soluble in water." But if you wish to get at the secret of asphalt making, pound the new lime and pass it through a fine sieve, and mix this with coal tar, and see the result. The writer was shown a large factory that was roofed with paper, and covered with gas tar and lime in this way. The owner had previously tried the slaked lime and wondered at his failure. The intelligent workman will boil his gas tar to get any moisture out of it, and having his pounded lime ready, he can add to suit his circumstances. The composition of bone is the point to be aimed at, for the bone earth by itself would be hard, but not tough, and the gelatin would be tough and clammy, but not hard; mixed together in due proportions, they are perfection. Mineral pitch used in paving is very well for street we but when the sun is powerful, it is quite fluid; not so is the will give the proper proportion, there can be no excuse for own way. If the carriage-way or foot-way is to be a perma nent way, its levels must be rigidly set out first, and good hard materials used to make up the levels; while fine dry gravel, pebbles, or cracked stone, may be tarred, and levelled, and rolled, just as would be done if no tar were used. But when the stone or gravel is tarred it absorbs none, whereas the lime unites with the tar, and the compound is quite different from either of its parents. We see constantly, about any of our large towns, heaps of cinders and clinkers (scorize) being mixed for making footpaths, the gas tar poured on or over at random, the finer parts being left to make a smooth over, cheap, but whoever has seen first class asphalting in that could be desired for walks or roads. ASHLAND, formerly the home of Henry Clay, has passed #### Rock-Tunneling Machine. been designed for facilitating the excavation of tunnels or made, fitted, and sharpened, these cutters form a great congalleries in the solid rock, these machines having, with but trast to those used in the Penrice machine, the latter being fe w exceptions, been intended for boring in the rock a series all curved and the series of rings being all of different W. W. Griscom, a sound scholar and scientist from Philadel. of holes for receiving blasting charges. Several machines of radii. this class have done excellent work, but they require to be The shaft, formed in one piece with the head, or keyed to resident of London-started for the scene. We reached the withdrawn during each explosion, and the debris has to be the latter, is furnished with a spherical end, which abuts stream of lava before sunset, and the summit before dark removed, and the roadway and the face of the rock prepared against a wrought iron cup placed at the bottom of the front We had a close view of the new crater, at the foot of the before another set of holes can be commenced; and the loss trunk of the piston, and which is held firmly in its place by great cone, which, having no accumulation of ejected matorial of time occasioned by these operations, together with the a suitable gland. This gland is made in three pieces, nameter, i.e., no cone of stones and ashes, shows clearly how it fact that in many cases objections exist to the use of explo- ly, two halves of gun metal fitting the sphere, and an outer was first formed. sives, have led several inventors to design machines for cut- ring of wrought iron holding these halves together. The A thick bed of solid rock seems to have been rent by the they are chilled castings, they will require no fitting to the During the past twenty years or so many machines have grooves in the head. In the case with which they can be A Night on Vesuvius during an Eruption. Mr. F. L. Capen, of Boston, gives the following account of a night passed on Mount Vesuvius during an eruption On the 9th of April, a party of us, among whom were Mr phia, and his pupil, Master S. C. Stanton, of Boston, now a ting away the whole bulk of the rock to be excavated. It is a new machine of this latter class, patented by Mr. F. T. Henley, of London, England, which we illustrate this week. #### HENLEY'S ROCK-TUNNELING MACHINE. furnished with cutting chisels, which are driven against the face of the rock at each blow, and provided with a traverse motion, which causes this head to move to and fro laterally, and thus cut out a gallery of rectangular section. Provision is also made for the automatic removal of the débris, and the machine is, in fact, intended to work on steadily day and night, only stopping under exceptional circumstances, or in the event of repairs being necessary. The particular machine shown in our engraving is intended for cutting a gallery four feet wide by five feet high. It consists of a massive cast iron bed plate mounted on six wheels, and carrying near one end the steam or compressed air cylinder, and at the other the traversing gear by which the head is made to traverse to and fro laterally. The head is shown in our illustration made in one piece with the shaft. The shaft may, however, be in some cases made of wrought iron, and bolted or keyed to the head; this, however, is merely a question of construction, and does not affect the principle of the machine. The head extends the full depth of the dovetail section, as shown, the ribs on the sides of the grooves forming the dovetail being, however, removed for a depth about twelve inches from the top of the head. The grooves receive the chisels, which are made in twelve-inch lengths, and which are inserted (the head being drawn back from the face of the rock) at the upper part of the grooves where the ribs are absent, and dropped into their places. The upper lengths are held in their places by bolts. The chisels are each made with four cutting edges, so that there are altogether twenty rows of cutting edges in the width of the head. Each of the outer rows of chisels stops short four inches from the bottom of the head, and thus the latter is made to cut a gallery having a step or ledge, four inches high by four inches wide, at each of its lower corners. These the latter is carried, traveling on these ledges and being thus we have mentioned are set to grip their wheels during the ceing straight, they can be very readily ground, and when chisels have to operate. izontal steam-or compressed air-hammer, having a head upon the bolts, the latter merely having to draw the ram smoke, roaring flames and lava, with great violence, as if back on the return stroke. At a short distance from the tions or lugs, hollowed on their under sides where they bear upon a pair of spheres which roll on a suitable table formed on the base plate, and which carry almost the entire weight and privation. of the shaft and head. The spheres are in fact so situated that when the machine is at half stroke, they are almost dishaft, and thus the piston is relieved of any excessive pressure which might cause it to wear unduly. The two spheres are one foot five inches apart laterally, from center to center, and they thus form a tolerably wide base, and serve to keep the head from canting. At a short distance from the lugs just mentioned, the shaft has a swell formed on each side of it, as shown in the plan, this portion of it fitting between a pair of guides cast on a carriage which is moved to and fro laterally by traversing gear. This gear consists, in the first place, of a lever, gallery, and is one foot eight inches broad at the widest part. the ram shaft, this recess being curved to an arc struck from oftener several reports, came in quick succession. Someis fixed on a rocking shaft, which extends partially across with much greater intensity than the first. At all the explo the machine beneath the base plate, and which carries two sions of this opening, immense volleys of glowing stones and levers which oscillate on a second shaft, and each of which spreading into magnificent bouquets of great billiancy, phery, the arrangement being similar to that known as Worssam's silent feed motion. The shaft on which the V groove wheels are fixed has a double-threaded worm formed on it, ranean rumblings far down in the deep caverns of the mounspindle, as shown. At the upper end of this spindle is a very base. pinion which gears into a mangle rack on the under side of This tunneling machine may be described briefly as a hor- thrust of the piston, when delivering a blow, throws no strain the chimney, through which pour volumes of
steam and from a mighty conflagration under intense pressure below. head, the shaft is provided with a pair of lateral projec. Our party were in haste to descend, as the night drew on; but I was not satisfied, and, being on the ground, I resolved to stay till morning; and I was well repaid for my trouble It is impossible to do justice to such a subject in a brief article. There are really three separate throats, so to speak. rectly under the center of gravity of the combined head and from the depths below, quite distinct in their mode of action. Two are within the main crater at the summit, on a line with the new one above named, which is near the N base of the great summit, or apex cone, whose action I have described. The middle throat or register is the only one that was violent in its action; and through the night, at longer or shorter intervals, it was terrific. After brief periods of rest it broke forth again with a tremendous explosion, as sudden and intense as that of the heaviest cannon, but many, many times vaster and grander, as if a magazine of powder or nitro-glycerin had suddenly been ignited far the upper end of which enters a recess in the under side of down in the deep bowels of the earth. Sometimes one, In the face of the head are formed five grooves of a kind of the center of the spherical end, formed on the shaft where times the first was loudest, but often the second and third the latter is attached to the piston. The lever just mentioned reports followed with increasing rapidity and violence, and other levers, which are coupled as shown to another pair of | hot cinders were thrown to the hight of from 100 to 200 feet, carries a pawl gripping a wheel with a V groove in its peri- many of these stones, some of large size, falling outside the crater and rolling down the cone in glowing fragments to its base. Sometimes the explosions were preceded by subter and this worm drives a worm wheel fixed on a short vertical tain, accompanied by a trembling of the solid frame to its The action of the third spout or register was wholly differthe carriage by which the ram is guided, and thus imparts to ent from the other two. There was no violent explosion, as this carriage, and consequently to the shaft, the to-and-fro of pent-up power, as in the case of that just described, ledges serve to support the machine, the wheels, on which motion of which we have already spoken. The pawls which though, like that, its delivery was fitful; blowing out at intervals, and never uniform, continuous, and unexplosive, kept clear of the debris. The chisels may be made of steel return stroke of the ram, and it is during this return stroke, like the first described new crater outside the cone, whose or of wrought iron with steel faces; but for many kinds of consequently, that the lateral feed is given. The rate of this flow was a copious compressed volume of smoke and flame, rock, they will serve perfectly well if made of a much cheaper lateral feed can be altered by varying the proportions of the as from a well-fed furnace, and with no noise, except that of material, namely, chilled cast iron. From their cutting faces levers, according to the nature of the materials on which the constant roaring of the flames. This third register made a great blowing noise like an immense fuse, and very much like the noise of an ascending rocket of immense proportions. It threw out volumes of black smoke and great bouquets of glowing cinders, but with much less violence than its companion, as if the opening were much larger-so much larger in proportion to its discharge as to divest it of all explosive violence. I should regard this as the old and nearly spent crater. #### APPARATUS FOR DYEING HAIR. This is a device by the use of which hair may be dyed without staining the hand of the operator. It consists of a cone, to the side of which is attached a sponge. The cone is provided with a handle like the handle of a shears' blade To this handle another handle is pivoted, having formed upon it a convex blade. In use, the sponge is made the vehicle of the coloring fluid, and the hair is grasped and drawn through between it and the convex blade. This device was invented and patented in 1867, by Charles Merritt, of South Weymouth, Mass. #### The First Telegraphic Instrument. An interesting relic of the early days of telegraphy has, it is said, been discovered at Morristown, N. J. It is the first instrument by which messages were received an 1 sent by the aid of the electric current. When Professor Morse was experimenting on the power and capability of electricity as adapted to the transmission of words, he spent a large portion of his time at Morristown, where he was assisted by Alfred Vail, esq., a practical machinist and inventor. At the Speedwell iron works of that town, then owned by the father of Mr. Vail, the experiment on the wires and on the construction of suitable instruments took place. On the completion of the experiments and the removal of Mr. Morse to Washington to bring his invention before Congress, Mr. Vail accompanied him, and, receiving the appointment of assistant superintendent of telegraphs, was stationed at Baltimore at that end of the experimental line. The instrument now at Morristown was one of two taken from Morristown by Morse and Vail-Morse using one at Washington and Vail the other at Baltimore. The first message sent was the now well known "What hath God wrought," which Morse transmitted to Vail; but the first public message was the news of the nomination of Polk to the presidency, by the Baltimore convention of 1844, sent by Vail to Morse. These instruments were in constant use for six years, when Mr. Vail, returning to Morristown, brought his with him, and where it has ince remained in the possession of his family. Mr. Vail dying soon after, his instrument was specially left, by a clause in his will, to his eldest son as an heir-loom, while parts of instruments made during the experimental trials were left to Professor Morse, with a request that he would give them at some future day to the New Jersey Historical Society. The old instrument works as well as when first made, and Saturday a message was sent to New York, and a reply re ceived at Morristown. An excellent photograph of the instrument was also taken, and with it a visit was made to Professor Morse, in New York. The professor was delighted to see the representation of the first instrument, having destroy ed, as he said, the fellow instrument which he had used in 1844. He readily recognized it, and wrote a certificate across the picture as to its being a true photograph of the first in strument ever used to transmit public messages. He also expressed a wish that the photographs might be generally distributed, that it might be seen how little, in essential points, it differed with those now in use. With the exception of size and clumsiness, the instruments are almost exactly sim-The dimensions of the instrument are sixteen inches in length, seven inches in hight, six inches wide, with two magnets of three inch diameter. The paper used was two and a half inches in width, three pens being proposed to be used. The weight of the instrument is twenty pounds. #### Rice's Process of obtaining Gelatine from Bones, Horn-Pith, etc. naw and State of Michigan, has invented a new process case in those compounds into which animal fats enter largely, as the keuteah. It had eaten nothing while it had been in of obtaining gelatine from bone, horn-pith, etc. separates the mineral constituents, leaving the gelatinous is that there is often a certain quantity of moisture in lard, matter free and ready for use, and also in such a treatment especially that which is steam rendered; as a consequence to exercise its deadly power by biting any person who should of the acid charged with earthy matter that it can again be the tincture is decomposed, and the benzoin is thoroughly come within its reach, was quite erroncous. separated therefrom, for further use on fresh material. It is mixed. The fat of the bear, opossum and skunk, is liquid it avoids using its fances as much as possible, except when claimed that the expense of the treatment is greatly reduce at the ordinary summer temperature, and when the tineture securing its food. ed by this process. and added to the acid used for original separation, so that an the most effectual for preserving them for a long time. actual gain of acid is effected. dilute phosphoric acid. The earthy matter of the bone, mix with equal parts of fresh castor oil. Of this mixture horn-pith, etc., is thereby dissolved and removed from the add four ounces to each gallon of fat or ointment while the case of a six inch belt running dry and smooth and slipgelatine, which latter can be converted into size or glue, or warm. The proportion of the solution of benzoin may be in- manner About two thirds or more of the solution of acid phosphate of lime, resulting from the above process are subjected to the action of sulphurous or sulphuric acid, which precipitates the lime in the form of sulphite or sulphate, either of which can be readily removed, leaving the acid or acid phosphate, according to the amount of sulphurous or sulphuric acid used in an available condition for further use on other bone horn-pith, etc. This process, by extracting the phosphates, originally held in the bone or other similar substance treated, yields an actual surplus of phosphoric acid, so hat it is claimed, almost fifty per cent. can be gained at each process. The residuum from the the last described process, and that part of the solution not treated with sulphurous or sulphuric acid, can be used for fertilizing or other purposes In the place of the phosphoric acid alone, a combination of it with any other acid or acids, in such proportions that the mixture will dissolve and remove the earthy matter in bone horn-pith, or equivalent substances, may be used. But the simple phosphoric
acid is more advantageous, as it acts in a satisfactory manner, and may be regained. #### A NEW SPECTROSCOPE. At a recent soirée at the Royal Society, says The Engineer Mr. Browning exhibited a spectroscope in which the rays of light pass through two batteries of prisms, and are then sent back through both trains of prisms to the eye of the observer, by means of a reflecting prism placed behind the last prism of the train. In this manner a dispersive power, equal to nineteen prisms of flint glass, is obtained. Both trains of prisms, as well as the intermediate prisms, are under the control of an automatic movement, which insures that every ray shall pass at the minimum angle of deviation for the particular ray under examination. Both the collimator and telescope are fixed-the prisms only are movable. It will readily be understood that this arrangement is highly advan- The D lines in the spectrum of sodium are seen in this instrument separated by an apparent interval of more than one eighth inch, and under favorable conditions of the at mosphere ten or twelve lines are visible between them. The engraving will give an idea of the principle of construction of this powerful spectroscope. The dotted line shows the path of the rays through the two batteries of prisms. The line of light first falls on the side of the prism, A; it is then refracted by each prism successively until it reaches B, from this it passes into the prism, C, which refracts the light at the first surface, and then totally reflects it at the second surface to the third surface, where it is once more refracted to D. It is then further successively refracted by each of the train of prisms, and sent back through the upper half of the prisms, having, in the first instance, bassed through the lower half. With the exception of the hight at which the ray passes, it may be considered to retrace the path which has been already described, and to emerge again at A. For the sake of clearness, the contrivance by which motion is continued from the first to the second train of prisms, is omitted in the diagram. This spectroscope is intended for application to a very powerful telescope, for the purpose of observing the solar prominences. Mr. Browning also exhibited a diffraction spectrum, produced by means of fine lines cut about 1200th of an inch apar; from each other on the surface of a small piece of glass. The plate was prepared by Mr. L. Rutherford, of New from the effects of the poison in fifty-nine minutes. The #### How to Preserve Fats. Every pharmaceutist, says the Journal of Applied Chemis try, experiences great difficulty in the preservation of fatty and yet how very small must that portion have been. compounds. During the hot weather of summer and in the warm atmosphere of the shop in winter, ointments and pom- cobra, which he had brought with him from India. It was Nathaniel B. Rice, of East Saginaw, in the county of Sagi ades become rancid and useless. This is particularly the about five feet in length, and of the variety k The chemistry of these changes is apparent to every intelli. his possession (since the eighth of June last), a period of The invention consists chiefly in the application, to the bone or similar substance, of phosphoric acid, which dissolves and to mix with them tincture of benzoin. The objection to this India for over five months without food. is mixed with them, it rises to the surface. The following The phosphoric acid of the bone is also taken therefrom mode of benzoating all kinds of animal fats will be found annually from cobras, the bites were almost always received Make a saturated solution of gum benzoin in alcohol by The bone, horn-pith or equivalent substances is placed in simple heat, allow the liquid to settle clear, then strain and refined for table or other uses, by any of the known processes. creased for pomades, as it forms, by its aromatic odor, an ex. cation of the above," The acid is next recovered from the earthy matter, tobe cellent basis for perfumes. The benzoatic fat should be kept used for repetitions of the same process in the following not in tin, but in jars well covered. Steam rendered lard, or that treated with salt and alum, should be carefully remelted in water bath to allow all the water to settle so as to pour off the pure fat. In preparing ointment and pomades it is important that the wax should be first melted, and the oil or fat warmed before adding to the wax. This precaution, which will save much time and trouble, is often neglected by young beginners. #### COMBINED THIMBLE AND NEEDLE THREADER. A near little device, for rapidly and easily threading needles, is shown in the accompanying engraving, and is the invention of Alex. Hunter, of Buffalo, N. Y. It consists of a piece of metal so bent that the needle may be thrust between the two limbs of the instrument till its eye rests beneath a funnel-shaped hole which guides the end of the thread into the eye of the needle. It is a useful and tasty little instrument, calculated to save eyes and improve the temper. #### Polson of the Cobra. At the meeting of the Boston Society of Natural History, Mr. George Sceva gave the results of an experiment, which he had recently made in connection with Dr. Thomas Dwight, Jr., with the poison of the Cobra di Capello, Naja tripudians. One quarter of a grain of the dried poison, which had been kept a little more than seven months, was put into twenty drops of water, the poison dissolved, and the liquid reduced by evaporation at a temperature of 85° F., to four drops. This was exposed to the air at a temperature of 22°, and was completely frozen in four minutes, the warmth of the porcelain vessel retarding the process slightly. The poison was allowed to remain in the frozen state for sixteen hours, during which time the temperature fell to 8°, or 24° below the freezing point. On the following day, the poison was thawed and diluted with three or four drops of water, and two drops of the liquid injected with a fine pointed syringe into the pectoral muscle of a pigeon, about half an inch from the keel of the sternum, the point of the syringe penetrating the muscle about one eighth of an inch. This part of the pigeon's body was selected in order to avoid wounding any of the viscera or large blood vessels. The poison was injected at 4:83 P. M., and at a few minutes past 7, the pigeon was found dead. Mr. Sceva then made some general remarks on the habits of the cobra, and on the action of its poison. In J. G. Wood's 'Natural History of Reptiles," several pages were devoted to accounts of antidotes, such as the leaves and roots of the Aristolochia Indica, the "snake stone," etc. These, with a great many other reputed antidotes, had been found by recent investigation to be utterly worthless. Mr. Sceva, during the past three years, while attached to the Indian Museum at Calcutta, had assisted Dr. Fayrer, the Professor of Surgery in the Medical College there, in his numerous experiments with the venom of poisonous snakes. Among those made to test the value of local applications was that of the actual cautery by plunging red hot irons deeply into the flesh in the places where the fangs had entered, but this failed to destroy the poison. To show the rapid effect of the poison on the blood, Mr. Sceva read one of Dr. Fayrer's experiments that he had witnessed, in which the inguinal fold of the skin of a dog was held by two pairs of long-bladed forceps in such a manner as to include a triangular piece of about three inches in length. The cobra's fangs were applied to the middle of the free edge, and with a sharp scalpel, held in readiness, the fold of the skin was at once cut out, and yet the dog died infinitesimal portion of time during which the cobra's fangs were inserted in the tissues was sufficient to have sent the poison through the circulation beyond the reach of incision, Mr Sceva exhibited on the table a living specimen of the He said that the common belief that the cobra would seek Of the great number of deaths (some thousands) occurring when people stepped upon them J. H. Cooren says, in the Journal of the Franklin Institute, 'A good adhesive for leather belts is printer's ink. I have #### Economizing Fuel, and Preventing Smoke, the application of a forced blast through the mass of fuel in a fireplace having no fire bars, has been patented by Mr. J. M. Stanley, of Elwy Hall, Rhyl, Wales. The inventor states that he does not confine himself to any particular kind of blast. Any of the known methods of obtaining one may be employed; but, for the sake of convenience, he generally uses a jet of steam (by preference superheated), which is injected through the nozzle of a steam pipe, having about a three-sixteenth aperture, into the mouth of a blast pipe, leading to a perforated cast iron tube, placed in the body of a fireplace, under or in front of the boiler. Thus a powerful blast is induced, and impelled through the perforated tube into the fire. The necessary oxygen for combustion being supplied by mechanical pressure, a chimney draft is not necessary. By contracting the outlet for the waste gases, a pressure of heat and flame is made to impinge upon all the heating surfaces of the boiler, without interfering with the progress of combustion. In ordinary open fireplaces, with long chimney stacks, the greater the draft the less is the pressure of heat upon the surface of the boiler; and the quicker it passes into the chimney, the greater is the waste of fuel. The Mining Journal (London) states that those who have tried the experiment aver that inferior fuel will, with this apparatus, generate as much steam as superior coal in common fireplaces; and, in many cases, the small slack, such as is thrown on the waste hill at the pit, has been used with great advantage. The invention, when applied, has a twofold effect. It economizes the consumption of fuel, by rendering the combustion of the gaseous products of the fuel
more perfect, and also prevents the emission of black or opaque smoke from the chimney, and causes the heat evolved by combustion to In the case of Cornish and other similar tubular boilers, the front part of the boiler tube or tubes is used for the fireplace, but in lieu of the ordinary fire bars, there are introduced, along the bottom of this portion of the boiler flue or flues, a metal tube or tubes, perforated at the top and sides, as may be required; this tube may be either of a circular, elliptical, or any other suitable shape, in section according to the size or form of fireplace, and may be either in one or For ordinary tubular boilers, the inventor prefers to have the upper part of the metal tube, which is perforated, in loose parts, for the convenience of replacing them when worn This tube extends from the front part of the boiler to the bridge air chamber, and is provided with a throttle valve at the inner end, which is worked by means of a connecting rod at the front of the boiler. The bridge air chamber is formed by two parallel partitions across the flue of the boiler at the end of the fireplace; the space betwixt the two partitions forms the said air chamber, and is covered with perforated metal or brickwork. In some cases, the front part of the perforated tube is left open to the external air, and by means of a suitable pipe or pipes, a jet or jets of steam are injected into the tube for the purpose of inducing or propelling a blast, which is forced through the perforations in the said tube into the fire. After coaling the fire, and when a partial combustion is going on in the fireplace, or black or opaque smoke is being emitted, the valve before mentioned is opened, and allows part of the air to pass directly through the tube into the bridge air chamber, and thence through the perforations at the top of the bridge. This air, in passing through the hot tube and air chamber, becomes heated sufficiently to effect the combustion of the smoke and the gaseous products of the burning fuel as they pass over the bridge. In other cases, the front part of the perforated tube is closed by means of a cast iron box, fitted with a blast pipe at the side, and an airtight door in the front, through which the ashes and refuse products of combustion may be removed; the blast may be either driven through the pipe at the side of the box by means of a fan or blowing engine, or be induced or propelled by a jet or jets of steam, as before described. By these means of supplying fireplaces or furnaces with the air necessary for the combustion of the fuel, a high chimney stack for inducing a draft is rendered unnecessary, and by contracting the outlet for the products of combustion by means of a damper or valve, the heat is caused to impinge more effectively and for a longer period against or upon the when passing over such surface in the usual way. For eggshaped and similar boilers, a cast iron firebox is used. It may be ogee, semicircular, or elliptical in section, as the ease may require. This firebox is fixed in a chamber of similar shape; its sides are perforated with holes inclined downwards to prevent the small fuel or ashes from falling into the chamber. A blast of air and steam is forced under the firebox, and through the holes into the fire, and into an air chamber formed at the end of the fireplace, as before described. A pipe, in which a throttle valve is fitted, connects the two chambers; in this case, the jet of steam is injected into a pipe or pipes placed at the end of the boiler, and lead ing into the chamber under the fire box. The fuel is supplied through doors, as in common boilers. For marine or locomotive boilers, a firebox is used having several perforated tubes, semicircular or quarter circular in shape, and through these the blast is forced by steam jets, as before stated. Arrangements for regulating the blast and for formprovided, as before described. #### Correspondence. An improved economizer, the essential feature of which is The Etitors are not responsible for the opinions expressed by their Cor #### Steam Hygrometer. Messas, Editors:—Ever since 1848 I have been a careful reader of your most valuable paper; and frequently, since 1852, you have honored me by inserting short articles written by me. A hundred thousand minds, in all parts of the Christian world, expand and bring forth valuable fruit through the scientific light radiated from 37 Park Row. To the careful reader, every issue is replete with valuable information; yet, to be useful to so large a variety of readers, much must be written that has more value for some than for others. Different pursuits, different habits, and different minds, must necessarily have articles specially adapted to their wants. I read nearly all domestic and foreign scientific journals. and find none equal to yours for general diffusion of practical knowledge to the great mass of readers. Now, in a late issue of the SCIENTIFIC AMERICAN, I find an extract from a paper by Leicester Allen, Associate Editor, which I consider the most valuable paper that has been written, on the all-important subject of steam, for many years. This paper (with the invention of the steam hygrometer, by its author), will open a new era in the generation and use of steam; for now the true standard of a steam generator will be the number of foot-pounds produced by a pound of coal, and not the absurd and indecisive test of the evaporation of water. The greatest possible power with the least coal and the least water, Some fifteen years ago, I was so fully impressed with this truth that I stated my belief, before the Polytechnic branch of the American Institute, that the quantity of water was no better test of the true efficiency of a steam generator than impinge more effectively or powerfully upon or against the the quantity a horse drank would be of the work he could boiler or other heating surfaces or flues, before passing into perform. This, as a matter of course, was in debate and merely figurative. In one thing I do not agree with Mr. Allen, namely, that sectional and admittedly safe boilers do not compare favorably with tank boilers as to economy in fuel. I am well acquainted with, and have professionally examined and tested, more than fifty sectional safety boilers in use in the New England States, and have found that an economy, ranging from two to forty per cent, over cylinder, flue, tubular, or upright tubular boilers, is always produced by these safety boilers. One case is very remarkable. The celebrated tool manufacturers, Messrs. Wood, Light & Co., of Worcester, Mass., bought a boiler, which, at a careful trial at the Fair of the American Institute, evaporated nearly fourteen pounds of water per pound of coal. As the boiler is directly under the works in the midst of the workmen, they concluded to put in a safety boiler. This safety boiler evaporates only some eleven pounds of water per pound of coal, but furnishes very dry and highly elastic steam; and the same engine is doing the same work with little more than half the coal. Both boilers are of ample size to do the work easily, and have nearly the same grate area. There are a large number of works in this section, where the same results have been obtained with safety boilers. I hope Mr. Allen will have his "steam hygrometer" manufactured, so that engineers and large manufacturing establishments may be enabled to judge of the true value of their generators, and he will thus do much to bring steam engineering to the desired perfection, when one pound of coal will give us five horse-power instead, as is now too frequently the case five pounds of coal giving one horse-power. YOUR BOSTON CORRESPONDENT. #### Galvanized Water Pipe. MESSRS. EDITORS:-In your issue of May 13, 1871, you have an article upon "Galvanized Water Pipes." It seems to the writer, who does not claim to be well posted upon such topics, that there may be a wide field for investigation in re gard to the thermo-electric influences at work upon metallic pipes. May not these exert a force so constantly at work that the aggregate results are not to be despised, although these results for a day, month, or even year, considered alone, are comparatively trifling? Does not any system of water water pipes connecting, by metallic and fluid mediums, two extremes of heat and cold, such as exist where one end of the system is terminated by, perhaps, hundreds of branches into as many houses, with their kitchens and water backs, and also by other branches, into manufacturing establishments, with their boilers and other steam apparatus where a high temperature is secured, and the other end of the system terminated in a spring or reservoir having a much lower temperature, develop a force constantly at work in the depletion of metal composing the pipes? Should not this force act most freely upon the cold portion of the pipes, and particularly upon any portion that might happen to be the purest, thus depleting the metal and leaving it to the force of the water to carry the material of this depletion where it can do most harm, namely: into domestic use? Is not any such force (if it does exist), intensified by using any two metals instead of one, as is the fact in all lined metallic pipes? Could it not be removed to a considerable extent, by introducing a section of rubber, gutta-percha, or other non-conducting pipe a little outside, or removed from the warm portions of the pipe, thus breaking the connection between the two extremes of temperature? Boston, Mass #### How do you Prove your Plumb Rule? Messus. Editors:—An article appeared some weeks ago ing an air chamber, and also for consuming the smoke, being your Plumb Rule?" This was afterwards criticized in coming concave through the greater wear of its middle poran article by a Georgia man, who justly claimed that the tions, the shorter grinds away to fit it. writer had lost sight of the question and given directions for
making a plumb rule instea of a way to prove one The Georgian gave a pretty good way to test a plumb rule, and then proceeded to show that the first mentioned writer's method of constructing one was impractical and not likely to produce a correct tool. I think any good carpenter will agree with him. This was followed by an article from a New Jersey man, who gave the practical and most exact way to make a plumb bob, and also showing why the geometrical or "circle" way is not the best way, though perfect in theory. Practical carpenters will indorse every word these two men said. Now comes the May number of the Manufacturer and Builder with the original article, which is fixed up with a pretty story of a lawyer posing a master builder in court. Now, I must say that that builder was a blockhead or was very much embarrassed, that he didn't teach the lawyer that he had got above his business, and was talking nonsense. I think the Manufacturer and Builder is sadly behind times in coming out thus late with the article, and rather stupid not to profit by the corrections of the Georgian and Jerseyman, But now I wish to ask a question. All this controversy has been about "plumb bobs." Pray tell me if the Southern and Middle States carpenters still use that ancient and honorable, but (so far as this part of the country is concerned) obsolete implement? I have not seen one in use since I was a small boy, and then only by a country carpenter, who, I suppose, did not know, or could not afford the luxury of a good spirit plumb and level. I could give a better test for proving either a level or plumb. But I cannot believe there is any builder who cannot originate ways and means for himself. A MAINE CARPENTER. [Our correspondent is making the not very common mistake of supposing that most people know as much as he does. Give us the better rule.-EDS. #### Fallacies in Building. To suppose that timber, growing in the woods or floating in water today, can be placed in a building next week, and stay where it is put. That if such timber be used, the walls will not crack, That the base, window panels, casings, etc., made of such timber, will not part company with the floors from one fourth to three fourths of an inch in less than a year, and that the builder put unseasoned lumber in the latter. That kiln dried lumber is as good as lumber thoroughly air seasoned, or that the atmosphere has no influence upon it. That a joint once tight will always remain so. That if trimmings be put up before plastering, or trimmed on green walls, that putty will not be in great demand when That hot air from a furnace will not start and open every piece of wood work with which it comes in contact, nine times out of ten. That if partitions be not properly braced, bridged, and ecured at angles, that plastering will not crack. That ceilings are less likely to crack if cross furred. That a pailful of lime to a cartload of sand will make morar of any practical use, either for plastering or brick work. That it injures mortar by mixing it some time before using it, or that if mixed one day and applied the next, it won't blister and crack. That a cement roof, so soft that it fills the leaders in summer, or so hard it cracks in winter, will not occasion the want of new ceilings in a little time. That a "botch" can build as good a building as a thorough That in all cases money is saved by contracting with the lowest bidder. That all knowledge in relation to building is embodied in every one who signs "Architect" after his name. That architects and builders never "lay in together," and owners never get "shorn" through that little arrangement. That architects, as a rule, get no other commissions on buildings except the traditional "five per cent on the cost." That builders always carry out plans and specifications to the letter. That there are no high-minded, conscientious, competent architects, and no honest, reliable builders; and that either class does not bear a reputation equal to that of any other business men That a builder does not require an extended theoretical, nor an architect as extended a practical knowledge, to be successful. practical architect cannot be a successful builder. That you, reader, without practical knowledge, know a great deal more about the details of a house than of a loco-JOHN HENRY. Paterson, N. J. PROPORTION OF SLIDING SURFACES,-We see a reference in one of our cotemporaries to the fact, that if sliding surfaces are equal to each other, they will wear true and straight. while if one be smaller than the other, the smaller will wear convex and the latter concave. The reason of this is obvious on a little reflection. In the case of equal surfaces, the wearing action will be greatest on the parts which are always in contact, and will diminish to the outer extremities. As, however, the conditions are identical for each surface, this will tend to make both concave, by which the bearing will be brought upon the ends, until these are reduced to a normal in the Scientific American entitled, "How do you Prove condition. With unequal surfaces, however, the longer beA FEW CORRECTIONS OF THE METHOD OF DETERMINING THE PERCENTAGE OF WATER MECHANICALLY SUSPENDED IN STEAM DELIVERED FROM BOILERS sibly heat water to 180°, which is a perfect corroboration of BY P. H. VANDER WEYDE, M. D. It is only in the interest of science that I feel called upon to draw attention to the existence of some errors in the calculation of the amount of priming of steam boilers, given by Mr. Leicester Allen, page 313 of this volume of the Scr-ENTIFIC AMERICAN. So long as they remain uncorrected, a conflict of scientific theory and practical experience must result; as, by the method there laid down, good boilers delivering dry steam will be accused of considerable priming, moderate boilers will be supposed to be some 30 per cent worse than they are, and only such boilers as deliver very highly superheated steam, would be considered not to prime The suggestion of the method itself (the application of the difference, in latent heat, of steam and water, as a practical test of one of the most important qualities of steam boilers), I consider as very ingenious, and creditable to Mr. Allen and it is only for this reason that I have taken the trouble to write this communication, which I trust will be a useful contribution to an important subject, and to the so ardently desired agreement between theory and practice. There are seven errors in the calculation-two in the making up of the formula, three in the use of the formula, and two in arithmetic-one in multiplication and one in division The first error is, that the latent heat of steam is accepted as 1,178 units, counting them from the zero of Fahrenheit while it is clear that, in order to heat water of 80° above that point, all the units derived from the heat below that temperature are not available, and must not be counted. The second error is of the same nature; counting the units of latent heat of water at 212°, as 212 units, he again counts 80 units from zero for the heat up to 80°; while, in fact, zero Fahrenheit is an arbitrary point—32° below freezingwith which, in this case, we have nothing to do. The third error is made in the attempt to correct these errors in the making up of the formula, and is, in fact, an acknowledgment of the same. A subtraction is made of 5×80, or 400 units, for the heat in 5 lbs. of water heated above 80°, but a similar subtraction is not made for the units of heat derived from the temperature below 80° in the half the construction of the formula. Meanwhile, I am much lb. of steam used. The fourth error is arithmetical, and of minor importance. It is in the calculation of the units of heat contained in 5½ lbs. of water of 180°. This should be 5½×180, or 990. and not 960, as stated, and used in the further calculation. This would give for b-590, or corrected from the first error The fifth error is of a more serious nature; it is in applying the value \frac{1}{4} for a, in the formula: $$x = \frac{1178 \ a - b}{966}$$ The formula is made by Mr. A., $$x = \frac{1178 - 560}{966 \times 2}$$, which is equivalent to $x = \frac{1178 \times \frac{1}{2} - 560 \times \frac{1}{2}}{966}$ and therefore all wrong, as we must multiply only 1178 with $a=\frac{1}{2}$, and not b or 560 with a or $\frac{1}{2}$. The formula should be $x = \frac{1178 \times \frac{1}{2} - 560}{9.6} = \frac{589 - 560}{966} = \frac{29}{966}$, which would correspond with only 3 per cent priming in place of over 31, as found on page 313; but in this reasoning is contained The sixth error. This is very grave also. The value of z is here considered by Mr. A. to be the proportion of water in a unit of steam, as is evident from his calculation of the percentage which he finds by dividing 100×(1178-560), or 100×618, by 966×2, or 1932. Now this again is wrong, as the formula has been based on the assumption that x shall "represent the water in pounds," x+y-a-11b. Therefore the value found for x is the direct amount of water in half a pound of steam, which must be doubled to find its amount in one pound, and then the percentage would be (assuming the other figures to be correct) 100×618×2, divided by 966× 2, or 63157 per cent of water. The correction of this error makes matters worse; but applying it to the partially corrected calculation, which gave 3 per cent, it would bring it to only 6 per cent. The seventh error is in the final fraction, 208, in place of \$38, but this may be typographical, and is, besides, of little importance comparatively. Applying now these corrections to the example given, where half a pound of steam has raised the temperature of 5 lbs. of water 100°, so as to have a mass of 5½ lbs., its units of heat, b, must be 51×100, or 550, while a is 1. Applying es for a and b, in the corrected formula $$x = \frac{1098 \ a - b}{966}$$ $$x = \frac{1098 \times \frac{1}{3} - 550}{966} = \frac{549 - 550}{966} =
\frac{-1}{966}$$ which means a deficiency of $\frac{1}{9.86}$ of water in $\frac{1}{4}$ lb, steam, or $\frac{1}{16.3}$ lbs, of water in 1 lb, of steam, or about one half of one per cent. The steam is thus slightly superheated, and could still absorb this small amount of water and yet be dry steam, a result quite different from that found, namely, 313, or over 31 per cent of water. Before dismissing the subject, it may be well to test this surprising result by inverting the operation, and calculating backward. Let us investigate what the result must be when 5 lbs. of water of 80° is heated by half a pound of pure dry steam of 212°. Such steam contains one half of 966 units of latent heat, and one half of 212-80 units of sensible heat available to heat water of 80°; this gives \(\frac{1}{2} \) (966+212-80-549 heat units, which divided in 51 of the resultant amount making this assumption, I followed the example of many stanof water, gives 343, or 998, not quite 100, bringing its tem- dard writers on steam, well known to engineers, and with whose canvas with wide interstices. sibly heat water to 180°, which is a perfect corroboration of the above criticism, and a proof that the result of obtaining in the example given, a negative value for x is strictly cor- In a similar way, it is easily ascertained how much one half pound wet steam, containing 31 per cent of water, must heat five pounds of water of 80°; it consists of one sixth of a pound of water and two sixths of a pound of steam. The units of heat in the steam are nearly 323, and in the water 62, total 385. This, divided by the 5.5 lbs. of water, gives an increase in temperature of 70°, bringing it to 80°+70°, or 150°, in place of 180° as found on page 313. I could easily prove that the absorption of heat by the copper lining, with unavoidable losses of heat by the manipulation, require another correction in favor of the boilers tested, as without these losses of heat, the five pounds of water would obtain a temperature of some two, three, or four degrees higher, which we ought, in order to be just, to credit to boilers tested. Taking this into account, the value for x, found in the above example, becomes about two per cent negative, proving the steam to be not only dry and without water, but considerably superheated. #### REPLY TO THE ABOVE, BY L. ALLEN. The paper which I find is complimented by the criticism of a man of such acknowledged scientific acumen as Dr. Vander Weyde, was written at the urgent request of the President of the Society of Practical Engineering-a request made at 4 o'clock P.M. on the day previous to the reading, the method of testing steam having been some time previously explained verbally to him. Pressure of other duties too important to be neglected, postponed the writing till late at night. The paper had not even a revision before it was read. Under such circumstances of haste, it would not be surprising that some purely arithmetical errors crept into the calculation, more especially as, having found the standards of quantity of water and steam I had been using inconvenient, I hastily changed them to the ones named in the paper. I shall show that the errors are only in the application of the formula to the quantities named, and not at all in obliged to Dr. Vander Weyde for calling my attention to these mistakes, as I should probably otherwise have passed them unnoticed, although they are apparent at a glance, now that my attention is called to them. So long as the principle is therewith; wash it with a linen cloth and fresh water, and sound, and the formula deduced therefrom correct, and the dry it with clean linen rags. Any kind of marble may be method is in itself pronounced essentially valuable by others of known scientific attainments, I may well be content that nothing worse than a few stray figures and a transposition of a factor, from a numerator to a denominator of a fraction, are all the flaws so acute an observer as Dr. Vander Weyde can fasten upon my humble production. These mistakes could mislead no one capable of understanding and working a zimple equation. As to the correctness of the formula, Dr. Vander Weyde asserts that I assume the latent heat of water at 212° to be 212 heat units, and the latent heat of steam at 212° to be 1,178 heat units. If he will again look at the paper in question, he will see that I assert no such thing. I do assume the total number of units of heat in steam at 212" to be 1,178, and the total number of units of heat in water at 212° to be 212, an assumption usually made in calculations relative to latent heat of steam, and which, while it abbreviates the calculation, gives results as exact as to compute the total from ice at zero, as the following comparison of the two methods will show #### DR. VANDER WEYDE'S METHOD. No. of units of heat required to raise 1 lb. of ice from zero to 32"... No. of units of heat required to change 1 lb. of ice at to 80"..... 48·0 Total units of heat required to convert 1 lb. of ice at zero into water at 80°.....=206.5 Multiplying this by 5, we have for the total number of units of heat in 5 pounds of water at 80° 206.5×5 1,032.5 In the same manner, the total number of units of heat after the water has been raised to 180° by the admission of steam, and increased in weight 1 pound, will be found to be 306.5×5.5-1,685.75. The heat added by the induction of steam will therefore be 1,685.75-1,032.5 heat units -653.25heat units. The formula should, on this basis, be changed from x- $\frac{1178a-b}{900}$, to $x=\frac{1304\cdot 5a-b}{900}$, and as a represents 0.5 lb., and b has been found to be 653.25, we have $x = \frac{652 \cdot 25 - 653 \cdot 25}{966} = \frac{-1}{966}$ a result which shows that the steam admitted in the exam- ple is slightly superheated, as Dr. Vander Weyde has shown instead of containing water, as the errors in working my formula made the result indicate. Now working my formula correctly, we have $x = \frac{1178a - b}{966} = \frac{589 - 590}{966} = \frac{-1}{966}$ 966 the same result as obtained by Dr. Vander Weyde's calculation, showing that, for all purposes of calculation, the results will not be altered by assuming the total number of units of heat, in a pound of steam at 212" to be 1,178, and the total number of units of heat in a pound of water at 212° to be 212. In works Dr. Vander Weyde must be well acquainted. The work is thus shortened by the absence of decimals, and the numbers are more convenient. Had I supposed for a moment this assumption would have led to a misconception in the mind of any one sufficiently acquainted with the physics of heat to understand the principle of the method, I should have adopted the extended mode of calculation, instead of the abbreviated one, although the results attained are the same, With regard to the absorption of heat by the copper lining of the steam hygrometer, and other losses during manipulation, I think they are deemed by Dr. Vander Weyde of greater importance than they really are found to be in practice; but it is easy to make the necessary corrections, should it be found essential to do so. The specific heat of copper is 0 09515. The lining of the water chamber of the instrument weighs about 0.5 pound; it would therefore absorb from 80° to 180°. only 4.75 heat units. #### Things Worth Knowing. J. H. T., in the Coach-Makers' International Journal, gives the following recipes: To counterfeit Tortoise Shell, very finely.-In order to do this well, your foundation or ground work must be perfectly smooth and white, or nearly so; you then gild it with silver leaf with slow size, so as to have it perfectly smooth, with no ragged edges, cleaning the loose leaf off. Then grind Cologne earth very fine, and mix it with gum water and common size; and with this, having added more gum water than it was ground with, spot or cloud the ground work, having a fine shell to imitate; and when this is done, you will perceive several reds, lighter and darker, appear on the edges of the black, and many times lie in streaks on the transparent part of the shell. To imitate this finely, grind sanguis draconis with gum water, and with a fine penil draw those warm reds, flushing it in about the dark places more thickly; but fainter and fainter and thinner, with less color towards the lighter parts, so sweetening it that it may in a manner lose the red, being sunk in the silver or or more transparent parts. When it is dry, give it a coat of varnish, let it stand a few days, then rub it down with pumice stone and water. Then grind gamboge very fine, and mix with varnish, giving of this as many coats as will cause the silver to have a golden color, then finish with a clean coat of varnish. How to Clean Alabaster.-Take ground pumice stone of the finest quality, and mix it up with verjuice; let it stand for two hours, then dip in a sponge and rub the alabaster done in the same manner. To CLEAN SILVER OR GOLD LACE.-Lay the lace smooth on a woolen carpet or piece of woolen cloth, and brush it free from dust, then burn rock alum and powder it fine, and afterwards sift it through a lawn sieve; then rub it over the lace with a fine brush, and in so doing it will take off the tarnish and restore it to its brightness, if it be not too much worn on the threads. HOW TO MAKE ARTIFICIAL MARBLE FOR PAPER WEIGHTS OR OTHER FANCY ARTICLES.—Soak plaster of Paris in a solution of alum; bake it in an oven, and then grind it to a pow der. In using, mix it with water, and to produce the clouds and veins, stir in any dry color you wish; this will become very hard and is susceptible of a very hig a polish. #### Plague in Buenos Ayres. Letters recently arrived from Buenos Ayres, giving sad and distressing accounts of a terrible visitation of yellow fever to that city, during the months of March and April The fever was exceedingly virulent in the whole city, and neither the strong nor the well nurtured were spared by it. It is
stated that nearly one hundred thousand people left the city in a few days, the terror being justified by the scourge, which destroyed, in some instances, whole families =142.4 in a single night. The panic was such that the suburbs and surrounding country became over-crowded, and lodging could not be obtained. On March 29, the mortality reached the appalling figure of 367, and the whole state of society seems to have been upset At a meeting of merchants at the Exchange, it was agreed to suspend all business, and to grant an extension of sixty days to all debtors and on all pecuniary obligations; and although the arrangement did not receive legal sanction, it has been practically carried out by the benevolent tolerance of all holders of securities. The devotion of all classes to the afflicted or bereaved is deserving of the highest laudation; a great many sanitary and relief commissions are appointed, and the exemplacy conduct of the entire population is worthy of great commendation. Money subscriptions in aid of the sufferers are , ouring in from all quarters. Sac. visitations seldom fail to show us the sad spectacle of good men falling victims to their own charity and disinterestedness, and a great number of those whom Buenos Ayres could ill spare have fallen, among whom the President of the General Relief Committee, Don Roque Perez, may be numbered. We are informed that this is the first visitation of yellow fever to Buenos Ayres, and that the contagion was imported from Paraguay. Our advices unite in considering the affliction so severe as to be a certain check on the rising prosperity of the country. CATGUT is the name applied to strings, made chiefly from the intestines of sheep, used for harp, violin, guitar and bow strings, hatters' strings, etc. It is said that the best strings are made in Naples, because the Italian sheep, from their leanness, afford the best raw material—the membranes of lean animals being tougher than those of animals in high condition. The same name is also given to a species of linen or #### Improved Furnace Grate. Our engraving illustrates a furnace grate, patented Feb. since June, 1870, with perfect success, the fire not having gone out in a single instance during the day. imperforate upper surface; and, when open, form a series By working the shake handle laterally .he grate is opened or closed. There be ing teeth or cogs on one side only of the shake handle pinion, only the front half or the rear half of the grate is opened or shaken, at the same time, the racks being respectively pivoted to the bar in the front and rear halves of the grate. This allows the grate to be used with as large or as small openings as may be desired. One half of the grate only may be used when a smaller fire is needed. The working of the shake handle also shakes the grate for clearing the fire of ashes. A blower may be used, discharging a blast into the ash pit, or a plain chimney draft, according to particular exigencies, We are informed that the grates, after eleven months' use, show no signs of The fire being kept on the top of the grates, they are kept much cooler than grates of some other forms. scarcely more than the expense of handling, and at the mines are without limit or cost. It is claimed that these grates are as effective as any other for burning coarse coal or wood, and that they will burn sawdust perfectly. For further information address G. W. Hildreth, Lockport, N. Y. #### SASH LOCK. Our engraving represents a very neat, simple, and efficient sash lock, which is, in our opinion, well adapted for use on and mixes up force, work, energy, etc., in a most ludicrous the sashes or blinds of railway cars, as well as on windows manner, and that such minor points as time and space, which kind has long been demanded by the traveling public. will allow the catch piece to turn by its point of contact with increasing the flow of oil very largely. the jamb, operates like a toggle joint, to press the catch piece obviates all defacement of the wood work. On the contrary, when it is desired to raise the sash, the upward motion of the sash immediately releases the catch touch any of them, and thus may obtain no oil, though it gave an opportunity for the construction of an aquarium in piece, so that the thumb piece formed upon the upper part may pass very near the crevices; or it may in its passage an ingenious manner. It was in an apartment below the of the catch piece is not used except when it is desired to downward touch only small seams, or make small apertures level of the water; in fact, it was a little submarine grotto, lower the sash. In this case, pressing upon the thumb piece into neighboring crevices containing oil, in either of which with a portion of the sea itself shut in by wire walls, where disengages the catch piece from its pressure on the jamb. Patented March 21, 1871, by P. B. Hovey, New London Conn. The whole or a portion of the right will be sold. Address the patentee for further information. Reading, Pa., was burned lately. 28, 1871, by G. W. Hildreth, of Lockport, N. Y. The grate we expressed our fears that the articles written by the Rev. s intended to burn anthracite coal screenings, without any Mr. Highton, and published in a journal of such recognized preparation or the admixture of any other fuel. The inven- authority and extensive circulation as the Chemical News. tor claims that, by the use of this grate, such screenings may would lead to a great amount of wasted effort on the part been brought. A few years ago a woodcut might have been be successfully used as fuel for the generation of steam. of oversanguine inventors. The result has confirmed our readily distinguished from all other illustrations by the He further informs us that one has been in constant use anticipations. Already applications are passing into the coarseness of the engraving. At present, we find some of Patent Office at an unprecedentedly rapid rate, and every few the best artists devoting their time to delineating on wood, days we find an announcement to the effect that some lucky and such is the delicacy of the drawings, the highest skill of The grate bars, when closed, form a level, smooth, and inventor has devised an electromotor whereby an engine of the engraver is required to preserve the effect produced by enormous power may be driven for weeks with an infinitesi- the masterly use of India ink, the lead pencil, and China of inclined upper surfaces, upon which the coal dust, or fine mally small amount of zinc. And as there are hosts of san white. The pictures in the illustrated journals, such as coal, may rest and burn, while the air is admitted between guine but unscientific inventors throughout the country, who Leslie's, Harper's, American Agriculturist, Appleton's Jour- #### HILDRETH'S FURNACE GRATE, burning out or warping, being as good as when first put in. ful man as any one else, these reports are setting all our in- blocks. After the wood in the log has been sawn up into ventors wild with excitement. It may be well, therefore, for sections of a proper thickness, and becomes thoroughly seaus to say that thus far we have no trustworthy accounts of soned, it is ready to be cut into blocks, and here one may see Coal screenings can be obtained in most of our cities at any engine exhibiting a marked superiority over those that what an amount of waste wood there is. Checks and other have been known to the scientific world for some years. imperfections require close cutting of the sound wood, and Moreover, the ablest scientific men of England have expressed their dissent from Mr. Highton's views, and have shown the together to form a large block. fallacy of his arguments. We may add further, that Mr. Highton's papers do not seem to be based upon any experi- four to six different pieces, fitted, doweled, and glued together ments he himself has made, but upon theoretical deductions with such extreme nicety as to present the appearance of a from old experiments of Joule, Jacobi, and others, many of solid piece. Large blocks are generally joined together with which were made a quarter of a century ago, and in a comparatively rude way. As a still further general objection to and re-united when ready for the printer,-Coach-Makers' the theories of Mr. Highton, we would say that he confounds International Journal. in dwellings, and which can be made to compete, in cost, with are regarded by most engineers as of paramount importance, are looked upon by him as not worth taking into account. Now, the shortest and most conclusive way for Mr. Highton to prove that a given amount of zinc, consumed in a galvanic battery, will produce an unlimited amount of power, is to show it by a practical experiment. Half the time and labor that he has spent in writing about this question would have served to submit it to a crucial experimental test; but then it is a great deal easier to write than to experiment, and, moreover, work done in the study with the pen, brings notoriety more readily than work done in the laboratory. For the present, at least, we would recommend our readers to be cautious about investing in electromagnetic engines. #### oll Well Torpedoes. In a recent trial at Pittsburgh, before Judge Strong, of the United States Circuit Court, the Roberts patent for increasing the flow of oil wells, by the firing therein of torpedoes, was fully sustained. The patent consists in sinking to the bottom of the well, or to that portion of it which passes through the oil-bearing rocks, a watertight flask, containing gunpowder or other powerful explosive material, the flask being a little less in diameter than the diameter of the bore, to enable it to slide down easily. This torpedo, or flask, is so constructed that its contents may be ignited either by means of caps, with a weight falling upon them, or by fulminating powder, placed so that it can be exploded by a movable wire, or by electricity, or by any of the known
means used for exploding shells, torpedoes, or cartridges under water. When the flask almost any in market. A good, convenient fastening of this has been sunk to the desired position, the well is filled with temper not the best adapted to withstand severe strains. water, if not already filled, thus making a water tamping Its construction and operation will be understood from the and confining the effect of the explosion to the rock in the engraving. A is the catch piece, pivoted to the bar, B. The immediate vicinity of the flask, and leaving other parts of the bar, B, turns radially on a pivot at the opposite end from A. rock surrounding the well not materially affected. When Naples, which is described as being a very interesting and and is forced upward by a spring, C. The catch piece, A, is these arrangements have been completed, the contents of the instructive display. The exhibition was divided into ten es the jamb | flask are exploded by the means already mentioned, and, as | groups or subdivisions, including steam machines, models of of the window, and the bar, B, being slightly longer than the evidence showed, with the result, in most instances, of ships, military arsenal machines, cordage, instruments for against the jamb whenever the sash seeks to descend. In this from oil wells, is, before it is removed, contained in seams or etc. Finally a number of objects were admitted under the way the sash is firmly wedged in the frame, so that it cannot crevices, usually in the second or third stratum of sandstone or class of articles of exportation, among which were some exfall. The rubber, while it affords a good hold to the catch, other rock abounding in the oil regions. These seams or quisite Venetian corals and glass. crevices, being of different dimensions, and irregularly lo. cated, a well sunk through the oll-bearing rock may not and in fact extended partly over the water of the bay, which cases the seams or the apertures are liable to become clogged | the fish swam about for their own and the visitor's pleasure. by substances in the well or in the oil. The torpedo breaks Cuttlefish, starfish, lobsters, a turtle some five feet in circumthrough these obstructions, and permits the oil to reach the ference, and numerous other citizens of the blue Mediterran- THE timber on 600 acres of land on Welsh Mountain, near that while the general idea of using torpedoes for the pur. at the sides let in a strong light that reminded one of Capri, pose specified is not patentable, the particular method of em- and rendered the cave a most interesting feature. Electricity as a Motive Power. | ploying them invented by Mr. Roberts is patentable, and In our issue for December 15, 1870, says the Technologist, therefore that he is entitled to protection. #### Boxwood. It is surprising to what perfection engraving on wood has think that each has just as good a chance to be the success. nal, SCIENTIFIC AMERICAN, and others, are all cut in box- wood. Boxwood, as is well known, grows in different parts of the world. The bulk, however, of that which is used in this country is imported from Turkey. The growth of the tree is slow. If it be twelve inches in diameter, its age is to be numbered by centuries, for it is above 500 years old. Those trees which attain a diameter of eighteen inches are about 1,000 years old. Block makers prefer trees eight to ten inches in diameter. The wood is sold by the tun, is very costly, and is of such various qualities that not more than an eighth or a tenth part of a tun is snitable for the finest engravings. The best quality of wood is of a bright canary color, the texture fine and close, and the surface free from dark markings; great care is required in preparing the as these pieces are necessarily small, several must be joined Blocks, the size of our fashion plates, are composed of from screws, so as to admit of being taken apart for engraving, #### CORK EXTRACTOR. The removal of a cork from a bottle into which it has been driven, is often a work of some difficulty. The implement shown in the annexed engraving, is designed to meet this difficulty. It is the invention of C. Rosenberry, of Chicago, Ill. It consists of a wire grapple, made of four wires twisted together to form a handle, leaving four ends projecting and hooked to seize the cork. The hooks are made to engage the cork, by a sliding ring with a wire handle which slides through the ring of the handle of the grapple. When, in taking out the cork, the grapple meets the neck of the bottle, the latter holds it firmly to its work. We have often, in the laboratory, felt the need of such an instrument as this, when wasting time endeavoring to ensnare a cork with a string. Corks, at such times, seem endowed with an amount of sagacity which enables them to elude a noose almost as surely as a Sixth Ward rough in New York. Had such an implement as this been within our reach, we have no doubt we should have been saved many a trial to a #### Italian Maritime Exhibition. A grand maritime exhibition was recently inaugurated at navigation, marine comestibles, fishing instruments and ma-The theory of the inventor is, that petroleum, or oil taken | terials, articles illustrative of the ancient and modern marine, The exhibition building was crected at the water's edge, ean, disported in their native element, quite unconscious of Judge Strong, in delivering the opinion of the Court, holds the admiring gaze of the crowd. Large panes of blue glass Scientific American. MUNN & CO., Editors and Proprietors. PUBLISHED WEEKLY AT NO. 37 PARK ROW (PARK BUILDING) NEW YORK. A. E. BEACH. The American News Co.," Agents, 121 Nassau street, New York. The New York News Co.," 8 Spruce street, New York. The Messrs, Sampson Low, Son & Marston, Crown Building, 185 Fleet street, Trubner & Co., 49 Paternoster Row, and Gordon & Gotch, 121 Holborn Hill, London, are the Agents to receive European subscriptions. Orders sent to them will be promptly attended to. VOL XXIV., NO. 23 . . . [NEW SERIES.] Twenty-sixth Year. NEW YORK, SATURDAY, JUNE 3, 1871. #### Contents: salve Leather Belts...353 Increasing the Hight of Rooms352 Inventions Patented in England b Americans. Italian Maritime Exhibition. Jean Lafitte and his Treasure Self at Buffalo Spectroscope Sp for Labeling Fruit and retroscope. 35 "Mach n Vesuvius during an 35 Note of Correspondents 382 Ocean for Dyelug Hair. 350 Officia is for the Extension of Oil W. ombined Thinsbe and Needle Threader. 35 Scientific Intelligence. 361 ork Extractor 36 Scientific Intelligence. 361 Intelligence. 361 The Descent of Man 366 The Eric Canal Navigation Proceedings of #### Importance of Advertising. The value of advertising is so well understood by old established business firms, that a hint to them is unnecessary; but to persons establishing a new business, or having for sale a new article, or wishing to sell a patent, or find tance of advertising. The next thing to be considered is the medium through which to do it. In this matter, discretion is to be used at first; but experience will soon the third papers of magazines having the largest circulation among the class of persons most likely to be interested in the article for sale, will be the cheapest, and bring the quickest returns. To the manufacturer of all kinds of machinery, and to the venders of any new article in the mechanical line, we believe there is no other source from which the advertiser can get as speedy returns as through the advertising columns of the Scientific We do not make these suggestions merely to increase our advertising pat- onage, but to direct persons how to increase their own business. The Scientific American has a circulation of from 25,000 to 30,000 copies large as the combined circulation of all the other papers of its kind pub- #### THE ERIE CANAL NAVIGATION PROBLEM. In the present article, we propose to notice some of the plans and devices that have been patented in this country for the propulsion of canal boats. In doing this, we shall not, perhaps, enter into a detailed description of any, but will give, in as few words as possible, the general principle of operation of such as may be suggestive in their character, or the defects of which may be either shunned or remedied by inventors. One of the first we find recorded, is an Archimedes screw surrounded by a casing, which was intended to protect the propeller and insure a more perfect action by reducing the rivet. slip. What was expected to be gained through the use of an Archimedes screw, that could not be obtained by the use of a flat screwblade, the record does not set forth. Next, we find paddle wheels set in shafts placed parallel to the line of motion of the boat, having blades or paddles placed obliquely to the axis of the wheel. It is obvious that wheels of this kind might be made to propel a boat. When moving in one direction, their tendency would be to throw the water toward the sides of the boat. Moving in the opposite direction, they must cause a powerful swell against the banks, if moved with even moderate velocity. We also find a screw propeller having grooved or ribbed blades, undoubtedly intended to obviate slip. It is not sur- labor in this country, principally because the superior educaprising that in the earlier attempts to use screws for this purvery little of the philôsophy of screw propulsion was known. A propeller consisting of two hinged buckets, connected by rods to a horizontal oscillating beam, which caused the buckets to move back and forth, like the feet of a man in the act of swimming, is also one of the earlier devices A screw wheel, hung in the rudder, and having a miter wheel at the end of its shaft next the boat, receiving power from a vertical shaft, which was driven by miter gearing from a horizontal crank shaft, is another of the earlier devices. Of course, the connection of the propeller shaft by miter gearing enabled it to be swung about with the rudder,
and it was evidently sought by this means to aid the rudder in changing the direction of the boat, since the action of the propeller would always be in the central vertical plane of the rudder. The screw was placed at the outer edge, and near the lower part of the rudder blade, and its shaft passed through the blade at right angles with the rudder post, being sustained by suitable bearings or boxes. We find, also, a pump with changeable valves, which drew ner, and only for temporary results. Their leaders often use motion of the boat. apparent. along, is also one of those devices of which we seek in vain some intelligible purpose. A queer device is that of an oscillating propeller, placed one on each side of the stern of the boat; the propeller being a flat blade, propelled by a pivoted lever. Another curious idea is that of placing a screw at the stern of the boat, to work in water, and another at the bow to work in air. The latter was intended to aid in raising the bow out of the water, though how it could do so, or what good there would be in so doing, could it have been done, probably was apparent only to its inventor. A screw with a cylinder cast or formed upon the ends of the blades, and revolving with it, is an attempt to carry out in another form the supposed obviation of slip, which preceding inventors had sought to gain by fixed cylinders. A boat, constructed with two water channels, extending one on each side of the whole length of the boat, with paddle wheels in the middle of the channels, is another attempt which has in it some elements of value. At least, the inventor evidently comprehended the fact, that the displacement must be made toward the rear of the boat, in order to avoid side swells. The next device worthy of notice is a boat with a central channel and a single paddle wheel. This boat was, essentially, made with two hulls, though above the water line they were decked in common. The exterior lines were straight, the general plan being such as would be described by splitting an ordinary hull lengthwise, and placing the outsides inward, so as to leave a channel between. Later, we find a series of vertically adjustable paddles, working in a reciprocating frame. Then follows a pole propeller, or what might be appropriately styled crab feet, which, engaging the bottom, push the boat along. Subsequently, a toothed rack, to run the entire distance along the side of the canal, was invented and proposed, the power to be applied from a toothed wheel, attached to the boat. The same idea has been, more recently, modified by another inventor, who proposed a chain instead of the rack, the teeth of the wheel to engage the links of the chain, Further along, we meet with an endless chain propeller, with paddles, like the buckets now used in chain pumps. Also, a reciprocating propeller, somewhat on the principle of a duck's foot. Then we fall upon reciprocating rods, with adjustable floats, and another reciprocating duck's foot propeller, and a frame working oscillating paddles at the side of the boat. It will be seen that in this, as in other departments of invention, the earlier ideas were many of them crude and impracticable, but the history of the application of steam power to the propulsion of canal boats, from the first attempt down to the one which will at last prove successful, will be scarcely less interesting than that of the various modes of propulsion for larger craft upon rivers, lakes, and oceans. In a future article, we may give some further information in regard to later inventions of this kind. #### HOW LABOR ENSLAVES ITSELF TO CAPITAL. If, in speaking plain truths, we hit somebody hard, our duties as public journalists admonish us to "cry aloud and spare not." The recent coal strikes, with their attendant riot and bloodshed, are an effort on the part of the working miners to shake off chains which they themselves have helped to The right of working men to form associations to protect their own interests is conceded. So long as any class is conceded this right, working men must be allowed the same right. Availing themselves of this right, their trade associations have become numerous, and, in one way, powerful. In compelling their fellows to obey the dictates of their associations, whether members or not, they succeed sometimes, by adopting the most ruffianly and dastardly means. The latter remark, however, applies with greater force to the European trade associations than to the American. Blowing up workmen with powder, putting needles in clay, rattening, etc., have not to any great extent disgraced the cause of tion of American workmen has produced a civilization which In the struggle between capital and labor, which bids fair to be a long and bitter one before a final adjustment of their have already shown in a previous article-that engines of this mutual relations shall be reached, the working men possess three essential elements of weakness. The first is, in supposing brute force to be stronger than mental and moral force. The second is that their want of frugality disqualifies them for holding out in long strikes, when starvation takes sides with capital. The third is, that, by excluding apprentices, they act like a general who, advancing to meet a powerful foe, refuses to accept recruits. If they opened their ranks to all new comers, and, by intelligent leadership, were directed to expend their efforts in creating opinion, and were caused to act as an unit, they could do almost anything they wished. By keeping at work and living providently, they could use their money to better advantage than by contributing to the support of isolated bands of strikers, at war with individual capitalists. At present the trade unions cooperate in only a feeble man- in water at the bow of the boat and discharged it at the stern. them to further their own political, or other selfish interests; The changeable valves permited the water to be drawn in at and so long as the mere control of present wages, and restricthe stern and discharged at the bow, in order to reverse the tion of other working men from entering the trades, are the objects of these organizations, they may and must be so used A screw, with a portion of the blade made elastic, is also by their leaders. They have no grand principle for which one of the patented devices, the object of which is not very they struggle; no definite idea of a final adjustment between capital and labor; nothing that looks forward to a time when Placing a steamboat at the stern of a boat and pushing it the interests of both shall be recognized as mutual. Hence they are divided by dissensions, and led by demagogues Capital, guided by intelligence, is stronger than they in all except brute force. At any time it retreats, it conquers, while retreat with a trade union, as at present organized, is disastrous defeat. #### CHARLES E. EMERY ON COMPOUND ENGINES. A given measure of expansion of a given volume of steam will develop a constant measure of mechanical power. Upon this axiom have those based their arguments, who maintain that compound engines have no capacity which theoretically can account for any economy of the fuel required for the performance of a given amount of work. With this axiom Mr. Charles E. Emery takes no issue; but, in a paper recently read before the Society of Practical Engineering, he announces a new theory, which, while it does not conflict with the fundamental axiom enunciated, does, he claims, account theoretically for a larger gain in economy made, or which it is possible to make, through the compound system. That for marine engines "it furnishes a better working enine mechanically, for utilizing the benefit of the expansion of high pressure steam, will," he thinks, " be very generally conceded;" but, he claims that "independently of mechanical considerations, it is more economical to use steam expansively, in a compound engine, than in any form of the ordinary engine." While admitting that there is no power gained through the use of a small high pressure cylinder, in combination with a large low pressure cylinder, and that, in so far as it is asserted that there must be loss of power owing to multiplication of passages, increase of clearance, etc., the engineers who deny the essential value of the compound system are right, he asserts that they err in considering the capacity of the cylinder as the measure of the steam used. This fact, he asserts, has been proved over and over, but has not till now received much attention. As additional proof, however, he cites some experiments of his own, made with two cylinders of like dimensions, the one of glass and the other of iron, the iron cylinder using fully twice as much steam as the glass one. The details of the ex periments given by Mr. Emery leave no doubt that the difference in condensing power between the two cylinders actually existed, as would also be supposed by those conversant with the difference in conducting and radiating powers possessed by the materials named. Mr. Emery does not state, however, whether one cylinder performed more work than the other, and we are left in the dark on this point. The amount of steam used in the two cylinders was determined by condensation, and we have no doubt that had it also been measured by the work performed, under circumstances calculated to economize the power of the steam to its atmost practical limit, the iron cylinder would have done nearly as much work as the glass one, with the same volume and pressure of steam, the difference being only that due to external surface radiation. He states that the experiments referred to suggested the employment of cylinders of non-conducting materials, when it occurred to him that nearly the same result might be obtained through properly constructed compound engines, involving no difficult mechanical details. The material part of the loss he regards as arising from the transfer of heat, by radiation, from
the cylinder to the exhausting steam. Connecting this fact with the fact that the quantity of heaf transferred from a radiating body to an absorbing body varies as the square of the difference of temperatures," he argues that if the temperature of the metal surface of a steam cylinder be 280°, and that of the exhaust 150°, the employment of two cylinders, reducing the temperature in each to one half the original amount, would reduce the condensation through radiation to one fourth that of the first cylinder; or, making all due allowance for increased extent of surface, to not less than one third as much, thus making a clear gain of two thirds of the heat lost by radiation in the single cylinder. We have endeavored to give in brief a fair statement of Mr. Emery's theory, though necessarily omitting much of his argument. It is a most plausible one, but we are not yet willing to concede that it demonstrates the superiority of the mpound system. We are willing to admit class have mechanical advantages which render them desirable for marine service If our readers will refer to the interesting communication of Mr. Harrison, published in our last is ue, they will see that the boiler pressure of a first class steamer, having one of these engines, is fifty-four pounds, and that expansion and condensation are both employed. The usual expansion is, we believe, about twelve times, in such engines; and, in the diagram accompanying Mr. Harrison's communication, the steam is shown as being cut off at half stroke in both the cylinders. The vacuum is maintained at twenty-seven inches. The boiler pressure used with these engines rarely exceeds sixty pounds, at which the temperature of the steam is 307". Suppose this steam to be expanded down to the atmospheric The difference between its temperature, when expanded, and that at sixty pounds, would be 95°. The amount of heat, then, that might be lost, by internal radiation, sup- multiplied by the weight of the cylinder, piston, and that tion? portion of the piston rod subjected to steam heat, estimated France, by her own showing, has been ruined by politiinches of vacuum Now, will Mr. Emery explain what other than mechanical of the world. difficulties impede the attainment of the same result with single cylinder high pressure engines, using condensers? As the heat leaves the cylinder, what does it do but con follow the piston with greater efficiency down to and below six inches of mercury column? Is this not possible, at least theoretically, in a single cylinder, with a condenser? The heat abstracted by the cylinder at high pressures, is stored up and imparted again at lower pressures, in both sys-tems; and we maintain still, that, under the same conditions, the same amount of expansion will produce the same ecois greater than that in single cylinders. If Mr. Emery's theory be correct, the steam jacketing of a cylinder is bad practice; for, though the cylinder abstracts no heat from the steam, as soon as the steam expands, the cylinder imparts heat, the amount of which must be greater when the cylinder is kept at a constant temperature, than when the temperature decreases and keeps more nearly uniform with that of the steam. If the heat imparted by the hot cylinder be not converted into work, it is lost; and we admit that, if allowed to exhaust without condensation, so that expansion can be carried to its lowest practical point, there would be loss; but why this cannot be done in a single cylinder, we, in common with many others, fail to see. #### POPULARIZING SCIENCE. We have seen it stated that, during the siege of Paris, Henry St. Claire Deville, one of the most illustrious, and, at the same time, genial and popular of the scientific men of France, made an address to the members of the Academy of Sciences, which was the occasion of earnest debate; but the text of the speech had not reached us until the English periodical Nature gave it in the original French to its readers. Deville says, what all the world had been uttering before him, that France was conquered by the science of Germany, The very discoveries and inventions of their own men had been used to destroy them. "The discoveries of Ampère, the inventions of our military engineers, have been cruelly employed against us, and thus they say on every side, and with truth, that we have been conquered by science," are his words. In seeking for an explanation of this disastrous state of affairs, Deville gives two adequate reasons: the first, that men of science had been overlooked by the Government, and mere politicians appointed in their places; and secondly, that as an aid to utilize the momentum of a moving train or car. the members of the Academy had devoted themselves too exclusively to abstract science, and left the world to find out what was going on in the best way it could. He proposes as a security, that the Institute should appoint committees to discuss all matters relating to the government; and, at the same time, seek to popularize science, and, by well edited publications, to familiarize the public mind with the grand discoveries of the day. It ought not to be forgotten, in this connection, that it was the Emperor, to make investigations into the properties and in 22 seconds. uses of aluminum. But this was a paltry sum compared with the millions expended by the same ruler on the luxuries by Deville has grown the cheap manufacture of sodium, and, indirectly, the preparation of the rare metals aluminum, cess. He made the fifty thousand francs go a great way, and trials was 30 miles per hour. showed what might be accomplished if the patronage of the government could be extended to similar investigations in device. other directions. Deville was, therefore, entitled to call upon his fellow members to come out from the dry bones of abusefulness and intelligence. It is certainly true that the French Institute has for a long | is instantly applied. time presented a curious spectacle to the world. Its mem-bers have grown old in the study of theoretical matters. They could not see beyond the ends of their noses, and when of a sumptuous lunch at the Erie Depot. the war broke out, and they found themselves shut up in Paris, they suddenly tried to make themselves useful by attacking some of the practical questions of the day, such as proper food for famine times, and deadly weapons and explosives for their enemies. It is amusing to read what they said about Boston brown, or Graham bread. Payen, who has written volumes, said that he had tasted it, and found it good; Dumas had seen it baked; Chevreul, the founder of all we know about soap and candles, had had some experience with it, and so on, through the list. And these grave men actually decided that "unbolted flour was safe to eat in war times." It is evidently high time that the members of the Institute were woken up, and, as an inducement for them to look more to practical matters, it would be well for the new government to assign requisite. What they need in France is less politics and mencement of the stroke, and to cool it down to 212" at the is conducted by politicians, and how often scientific men are end of the stroke, would be 95° × 12983 (specific heat of iron) invited to take part in the various branches of administra- was lost. in pounds. The product would be expressed in units of heat. clans; it may be well for us to take note of this and profit by It is evident that such loss would be large on heavy cylin. the lesson. In the matter of popularizing science, we can ders, unless the heat was converted into work by the expan-safely challenge criticism, in the United States. There is sion of steam at lower temperatures. This is done in the scarcely a newspaper, magazine, or weekly, that has not a compound engines of the Magellan, as, according to Mr. Har-special scientific department, and the Scientific American, rison's statement, the steam performs work to within six in the course of the year, furnishes an account to its readers, of every invention of importance that is made in any part The result of this wide dissemination of knowledge is that the American people are famous for their practical talent The universal Yankee is a mystery to European nations, as tinue to expand the contained steam, thereby enabling it to they have no analogous character with which to compare him. There is more danger of our running to the other exthe atmospheric line, the steam exhausting at a pressure of treme, and of our rendering scientific knowledge superficial cable by too great a desire for popularizing it. It is better to strike an average, and to secure well-endowed universities, as well as technological institutes; and as our journal is outside the arena of politics, we may with propriety suggest that a little less politics and more science, in the administration of the affairs of Government, would enable us to escape nomical result. Of course, the surface radiation in compound the dangers which have brought France so low, and threaten some day to overturn our own Government, #### TRIAL OF OLMSTEAD'S ELECTRIC CAR BRAKE. An excursion party, consisting of members of the press and railroad men, was recently invited to witness the trial and operation of this novel brake on a train of five cars on the Erie Railway. The levers are of the ordinary kind, and may be operated by hand in the ordinary manner. The electric device is an attachment to one of the levers of the ordinary brake. The electric arrangement is as follows; A horizontal swing shaft is placed within the car truck, parallel with the car axle, on which shaft is a loose shell pulley which receives motion from the car axle against which it rests. Within the loose pulley is a fixed pulley, keyed on the swing shaft. On the face of the fixed pulley are two powerful electro magnets, each capable of sustaining 300 pounds, so that their combined force is 600 pounds; these are connected by wires with a Daniell's battery, on
the car; each car having its separate battery. A chain extends from the swing shaft to the brake The wires, connecting the battery and the magnets, extend to a key board attached to the ceiling of the car, and the electric connection is made at this point by a simple lever or key, operated by the bell cord. On pulling the cord, whether by the engineer or conductor, or by the breaking of the coupling, the electric circuit is made, and the magnets draw the loose and fixed pulley together, whereupon the swing shaft winds up the Lrake chain, and the brakes operate on the wheels and stop the train. It may be said that the electricity forms a clutch, and thus holds the brake shaft to a pulley which is kept in motion by the movement of the car. Electricity is therefore employed The party started from Jersey City at 12 30 P. M., and, after passing through Bergen Tunnel, the trials were made on the level grounds of the meadows, as follows: 1st. The train was stopped in 55 seconds with hand brakes. 2nd. The electric brake stopped it in 45 seconds. 3rd. With the electric brake and reversing the engine, the train was stopped in 28 seconds. 4th. The engine was detached from the train when going at full speed, which set the electric brakes in operation Deville who obtained an appropriation of 50,000 francs from throughout the train, the latter being stopped by their action 5th. This was the last trial, and consisted in detaching the two rear cars, when the train had attained a maximum speed. and vanities of his court. And yet, out of the research made | The moment they were detached, the electric brakes were set by the cord itself, and the two cars stopped in 13 seconds, while the part attached to the locomotive was stopped in magnesium, boron, silicon, and the gold amalgamation pro- about 40 seconds. The maximum speed in all the above Every trial was a success, showing the great utility of the The electric brake may be operated by the engineer or by the conductor, by simply pulling the bell cord. In case of stract science, and try to clothe them with the garments of separation of the train, by the running off of one of the cars or other cause, the brakes become self-acting, and their force > On the conclusion of the experiments, which were eminent ly successful, the party returned to Jersey City, and partook > We learned that this brake had been in use on the Middle town train of the Erie road, for the last seven months, stopping the train fifty times daily; and further that it was the means of saving the train from a fearful accident at West Paterson Bridge, where the engineer was warned of danger only 2,000 feet distant, and stopped the train within 50 feet of an oil train, in 23 seconds on a down grade, The brake was patented April, 1870, by J. Olmstead and W. O. Cooke, of Providence, R. I. #### OCEAN TELEGRAPHY. Cyrus W. Field, Esq., in a recent letter to Prof. Morse, states that the date of completion of the first Atlantic cable between Great Britain and America, was August 5, 1858. them places in the bureaux where a scientific knowledge is This cable ceased to work on September 1st of the same year, after exactly four hundred messages had been transmitted. posing the steam to heat the cylinder at 307° at the com- matters in this country, to see how far our own Government | the 2d of August of that year, when about two thirds of the length had been laid, the cable broke from the vessel and > The second cable, between Ireland and Newfoundland, was completed July 27, 1866. The third cable (consisting of the lost cable of 1865, which was recovered in 1866,) was completed September 8, 1866. The fourth cable, from France vid St. Pierre, N. F., to Duxbury, Mass., was completed July 23, 1869. During the month of March of the present year, 12,547 messages, or about 405 per day, were transmitted by Atlantic At present, only one cable-the French-is in working or-The first cable is supposed to have been defective in construction. The second and third cables ceased to work some time ago, owing to defects in the shore ends near Newfoundland. These cables are to be fished up and repaired in June next. All the business is at present done on the French Telegraph lines now reach as far east as Singapore, a distance of some nine thousand miles from New York. From Singapore to Hong Kong, a line is to be completed within a month; and from this line a cable to Australia is to be completed in November next. #### JEAN LAFITTE AND HIS TREASURE. The reputation for wealth acquired by piracy, which Jean Lafitte has attained, has set many to employ time and means, worthy of nobler ends, in searching for his hidden treasures. Lafitte was not a sailor, nor a pirate. He was a blacksmith by trade, and became agent to an association engaged in the capture of Spanish merchantmen. This association was under a commission from the Republic of Columbia, which was, in the early part of the present century, at war with Spain. Columbia issued letters of marque to the ships of Lafitte's organization, and a great deal of valuable mer chandise was seized. The property was taken into posses sion by the United States Government, and consumed during the defence of New Orleans, in 1814 and 1815. Lafitte's men were released from the prison, in which they had been placed, and sent to man the batteries in Jackson's lines. They were granted full liberty at the end of the war, and received the thanks of General Jackson. These facts must be in the remembrance of some now living, and are mentioned in books accessible to all the world; but there is a curious superstition among the more credulous of the inhabitants of some of the Southern States, that Lafitte and his followers buried untold mines of wealth in some of the islands outside the Rigolets. The folly of the believers in this "yarn" has led many of them to risk their fortunes in attempts to recover the treasures, and the fact that Lafitte's men, when discharged from service, never visited the place where they are reported to have deposited their property, has not prevented men, even in our own day, from following the chimera. Jean Lafitte was drowned in the Gulf, in the wreck of a little ship of which he was supercargo, and his associates mostly remained in New Orleans, and were always poor men. Recently, Mr. A. J. Newell, a compositor by trade, and lately employed on the New Orleans Picayune, left his home to explore the islands which tradition pointed out as the depository of the treasures. He had received from his father an oral communication (said to be derived from one of Lafitte's men), detailing the place of deposit with minute exactness. Many members of Mr. Newell's family had made similar voyages, and their credulity was not shaken by the always-repeated failure. But a disaster has now changed the comparatively harmless folly into a tragedy. Mr. Newell's body was discovered in the water, near the islands, with the marks of a fatal gunshot on it. Thus ends a life made remarkable by its utter engrossment by one idea, spent in pursuing that idea in the teeth of common sense, reason, and history. #### CANALS, ANCIENT AND MODERN. The ancients early recognized the importance of canals as mediums for internal communication. Probably the first work of this kind was constructed by the Egyptians. It connected the Nile with the Red Sea, and in 1798 the work was in such a state of preservation that a company of French engineers reported that it only needed cleansing to render it navigable once more. Herodotus attributes its commence ment to Pharoah Necos, in the year 616 B.C. Although Pliny, Strabo, and other historians do not agree with Herodotus as to the date of its commencement and the name of its founder, they all agree in that there was such a canal, and that it was commenced some five or six 'centuries before the Christian era. Strabo says the canal was 150 feet (100 cubits) broad, and that ships were four days in sailing through it. The Cuidians, ancient inhabitants of Caria, in Asia Minor, designed and dug a channel through the isthmus joining their territory to the continent. The Greeks made an unsuccessful attempt to cut a navigable passage between the Ionian Sea and the Archipelago. The Romans built large canals, called "Fossæ Philistinæ, at the mouth of the Eridanus or Po river. The canals of the Pontine marshes were accomplished 162 B. C., and, after a long period of disuse, were restored by the Emperor Trajan. From time immemorial, the rivers of China have been united by canals, and there is no country on the face of the globe where the advantages of such a network of canals are so manifest; for these canals, with the natural water communications, render the tunnage of that country but a little less than the combined tunnage of the rest of the world. The more science. Would it not be wise for us to investigate | An attempt to lay another cable was made in 1865; but on Grand Canal of China is the most stupendous work of the kind ever executed. It was commenced in the tenth century up in the shape of narrow gage railways, which are attract ble loss in the liming process, in the preparation of the liming of our era. It is nearly 700 miles in length, and extends from Hang-choo-foo to Yan-liang river, forming an unbroken connection between fifty cities. It joins the great rivers Yang-tse-kiang, 2,900 miles long, and Ho-hang-ho, 2,000 miles. This and other Chinese canals are not constructed upon the same plan as the canals of Europe and America, nor composed like them of standing water, fed by reservoirs, elevated and lowered by means of locks. The want of locks obliges the * Chinese to conduct their canals around the different elevations encountered, and to lift the boats by means of chain and capstan. The irrigation supplied by the Grand Canal renders the country through which it passes exceedingly fertile, and, in proportion to its size, the most populous spot in the world. The construction of canals in
modern Europe was commenced in the twelfth century. Sluices, with double doors, were not introduced until 1481. They were first used at Viterbo, in Italy, The first canal made in England connected the rivers Trent and Witham. It was begun during the reign of Henry I. England has now 2,800 miles of canal communication, Ire land 300, and Scotland 175; making a total of 3,275 miles for the United Kingdom. The longest of these canals is that which joins Leeds and Liverpool, 127 miles in length, finished in 1816. The New river, which has supplied London with water, is a canal. The canal connecting Manchester with Worsley, built by the Duke of Bridgewater, in 1755, was cut, for eighteen miles, under ground, at a cost of £170,000. The canal of Briare, the oldest in France, was commenced in the year 1606, during the reign of Henri Quatre, and finished in 1740. It is 344 miles long, and in conjunction with the canal of Loing, at Montargis, forms a communication between the rivers Loire and Seine. It was constructed under Hugues Cromier, a renowned engineer of that time. The celebrated canal of Languedoc is the largest in France. It has more than one hundred locks, is 153 miles in length, and is capable of admitting vessels of one hundred tuns burthen. Commencing in the river Garonne, at Toulouse, and terminating in the lake of Thau, it forms a connection between the Atlantic and Mediterranean seas. The canal from the Durance to Marseilles is 52 miles long; 11 miles of this length are subterranean passages through the Alps. It was finished Holland, the land of dikes and ditches, is completely cut up into small islands by its extensive system of canals, which cross and interlace each other like the threads of some large fishing net. Owing to the level state of the country, the construction of a canal involves but comparatively little labor and expense, and many of them are used as substitutes for public highways; in the winter, their frozen surfaces offer convenient roads for skaters. The North Holland canal, the finest work of its kind in Europe, was built during the years 1819-23, at a cost of \$4,750,000. It is 50 miles long, 125 feet broad at the surface, 36 feet at the bottom, and has an average depth of 21 feet. By means of this canal, ships bound to Amsterdam avoid the danger and delay incurred in navigating the Zuyder Zee. Since not only the surface, but the bed of many of these canals is above the level of the land, the drainage of the meadow lands, through which they run, is a matter of great solicitude. It is effected by means of wind mills, working pumps. In spite of many difficulties, Russia is traversed by canals. An unbroken communication, by this means, has been estab lished between St. Petersburg and the Caspian Sea; canals unite the Baltic and Black Seas; and the White and the Caspian are in like manner united. A traveler can go from St. Petersburg to Selmquisk, in Siberia, with the exception of a few miles, all the way by water. In 1817, Mehemet Ali, perceiving the importance of Alexandria as a commercial center, restored the ancient communication with the Nile by means of the Mahmoudieh Canal. Since the building of this canal, the population of Alexandria has quadrupled. About a half a century after the completion of the Mahmoudieh Canal, the great canal of Suez was opened to the commerce of the world. The first canals constructed in the United States were those of South Hadley and Montague, in the State of Massa chusetts. The company received its charter in 1792, and the work was commenced without delay. The South Hadley canal was built to afford a safe transit around the South Hadley Falls. It is two miles long, has five locks, and for a distance of 300 feet is cut 40 feet deep through solid clay-slate rock. The Montague canal passes around Turner's Falls, is three miles long, and has 75 feet of lockage. The largest canals of the United States are: | NAME. | STATE. | LENGTH. | COST. | |---|--|--|---| | Erie Chesapeake & Ohio Central Division Western Delaware & Hudson Ohio & Erie Miami Illinois & Michigan | Pennsylvania. New York and Pennsylvania. Onio. | 363
191
173
104
108
307
178
102 | \$ 8,401,394
10,001,000
5,901,252
3,006,000
4,695,834
3,750,000
8,654,397 | The Welland Canal, in Canada, which connects the Lakes Erie and Ontario, avoiding Niagara Falls, is but 36 miles in length, yet it cost the enormous sum of \$7,000,000. With the invention of the locomotive engine, and its subsequent introduction, the time of the construction of large and expensive canals passed away. While the increase in the total length of the canals of the United States, during the past twenty years, can be not more than a thousand miles, the increase in the total length of railways, during the same period, is more than forty thousand. An additional barrier to an extensive increase of canal communication, looms instead of salt, as formerly; and further, to avoid considera- having this signification. ing great attention at this time, and which at no distant day will be the great freight carrying methods of this country. #### THE DESCENT OF MAN. A CONTINUATION OF AN OLD SONG. Air-" Greensleeves." (Darwin loquitur.) Man comes from a mammal that lived up a tree, And a great coat of hair on his outside had he, Very much like the dreadnoughts we frequently see- He had points to his ears, and a tail to his rump, To assist him with ease through the branches to jump-In some cases quite long, and in some a mere stump— Which nobody can deny. - "This mammal, abstaining from mischlevous pranks, Was thought worthy in time to be raised from the ranks, And with some small ado came to stand on two shanks— Which nobody can deny. - Thus planted, his course he so prudently steered. That his hand soon improved and his intellect cleared; Then his forehead enlarged and his tall disappeared— Which nobody can deny. - "'Tisn't easy to settle when Man became Man; When the Monkey type stopped and the Human began; But some very queer things were involved in the plan— Which nobody can deny. - " Women plainly had beards and big whiskers at first; While the man supplied milk when the baby was nursed; And some other strong facts I could tell—if I durst— Which nobody can deny. - Our arboreal sire had a pedigree too; The Marsupial system comes here into view; So we'll trace him, I think, to a Great Kangaroo-Which nobody can deny. - "The Kangaroo's parent, perhaps, was a bird; But an Ornithorhyncus would not be absurd; Then to frogs and strange fishes we back are referred-Which nobody can deny." Thus far Darwin has said: But the root of the Tree. Its nature, its name, and what caused it to be, Seem a secret to him, just as much as to me, Which nobody can deny. Did it always exist as a great institution? And what made it start on its first evolution? As to this our good friend offers no contribution Which nobody can deny. Yet I think that if Darwin would make a clean breast, Some botanical views would be frankly confessed. And that all flesk is grass would stand boldly expressed-Which nobody can deny. -Blackscood #### SCIENTIFIC INTELLIGENCE. HYDRATE OF CHLORAL AS A REDUCING AGENT. It is stated in some of the pharmaceutical journals that the hydrate of chloral can be employed as a reducing agent to great advantage. All of the noble metals are at once reduced by it, in the presence of caustic potash or soda; and as chloroform is evolved in the process, and this envelopes the reduced powder, the precipitate can be readily washed out. When the solutions of gold, or of the metals of the platinum group, are treated with hydrate of chloral, warmed, and an excess of caustic soda added, and the whole boiled for a minute, a complete red ction of the metals takes place, probably in consequence of the formation of some formic acid by the splitting up of the chloroform. In the case of silver salts, the reduction is also complete, and chloride of silver is formed. Mercury salts are not acted upon. These properties of the hydrate of chloral suggest its possible application for metal plating on glass, and possibly in photography. Let some one try the experiment, and report the results. #### HYDROSTATIC-GALVANIC GAS LIGHTER. A number of patents have been taken out for the instantaneous ignition of gas by electricity, but they all require the laying down of long connecting wires, and more or less complicated apparatus. Professor Klinkerfues, of the University of Göttingen, has invented for his use, in the astronomical Observatory, of which he is Director, a simple apparatus, which may be capable of more extended application than the learned professor contemplated when he had it con structed. It was in this same observatory that the famous Gauss had an electromagnetic telegraph in operation ten years before one was set up in the United States, but in those days there was little enterprise among the scientific journals, and so the world lost the benefit of the invention. We therefore hasten to relate what Professor Klinkerfues has done to avoid a repetition of the former error; but we are us. The hydrostatic-galvanic gas lighter consists of a simple apparatus, attached to each street lamp or gas jet, and communicating with the supply pipe in such a way that by increasing or diminishing the pressure, it is immediately brought into or thrown out of action. Keeping the apparatus in order would be the work of the lamp cleaner, aud would not require any particular skill. It is well known that a jet of steam, through wire gauze or pointed teeth, will evolve electricity, and it is probable that the same principle is applied to a jet of gas. The experiments
tried in Göttingen are said to have been entirely successful, #### TECHNICAL USES OF CARBOLIC ACID. Emil Sommer gives, in a German industrial paper, a summary of the more recent technical applications of carbolic acid, from which we translate the following: 1. In tanning. The fresh hides are kept fresh and from putrefaction by employing a weak solution of carbolic acid. a solution of carbolic acid (1 in 300) is employed. It would be well to cover any animal refuse about tanneries with weak carbolic acid, to destroy the bad gases and fetid odor odor arising from this source. 2. Catgut manufacture. In this industry, the chief evil arises from the necessity of macerating the entrails, which renders the neighborhood unendurable. By soaking the parts in a weak solution of carbolic acid (1 in 1,000) for an hour, then hanging up to partially dry, and repeating the operation, the entrails will have lost their disagreeable odor, and can be macerated and further worked up without incon- 3. Glue. The crude material for this industry can also be treated as above described. As carbolic acid is explosive, coal-tar water can be employed as a substitute. Shake up a quantity of coal tar in water, and allow it to settle, and use the decanted water. In this way, one pound of coal tar will yield fifty quarts of weak carbolic acid. #### A CARD FROM PROFESSOR LIEBIG. Professor Liebig publishes a card in the last number of Erdmann's Journal, in which he stoutly protests against the use of his name in connection with all manner of patent medicines, extract of malt, and the like. He says: "The only preparation which bears my name with my permission is the extract of meat manufactured at Fray-Bentos, in South America, and this is accompanied by the condition that none of the extract shall be put into the market until it has been thoroughly tested by Professor Pettenkoffer or myself; this condition has hitherto been conscientiously observed by the Fray Bentos Company." As the extract of meat is sent to market, from all parts of the world, bearing Liebig's name, it may be well to observe that none is genuine excepting that from the above-mentioned authorized South American com- #### Painting Iron Work. There is no production for iron work so efficacious as well boiled linseed oil, properly laid on The iron should be first well cleaned and freed from all rust and dirt; the oil should be of the best quality, and well boiled, without litharge or any dryer being added. Their on should be painted over with this, but the oil must be laid on as bare as possible, and on this fact depends in a great measure the success of the application, for if there be too thick a coat of oil put upon the work, it will skin over, be liable to blister, and scarcely ever get hard; but if iron be painted with three coats of oil, and only so much put on each coat as can be made to cover it by hard brushing, we will guarantee that the same will preserve the iron from the atmosphere for a much longer time than any other process of painting. If a dark coloring matter be necessary, we prefer burnt umber to any other pig ment as a stain; it is a good hard dryer, and has many other good properties, and mixes well with the oil without injur #### Note on Caseine and Milk-ash. In chemical text books the caseine is generally said to be held in solution in milk by means of an alkali, with which it is suppo ed to form a kind of salt; and the precipitation of caseine by means of an acid is explained as a consequence of the decomposition of the compound between caseine and the alkali, milk-ash being described as containing abundance of alkaline carbonates. The editor of the Milk Journal, in examining samples of milk-ash, obtained in the course of an inquiry into London milk, was struck with the fact that there s no effervescence when an acid is poured on a milk-ash This led to careful experiments on the action of a very dilute standard acid" on the ash, and he found that there is no appreciable quantity of alkali or alkaline carbonate. According to his observations, made on a great variety of milks the milk ash does not contain so much alkaline carbonate as would amount to the $\frac{1}{100}$ of its weight. Therefore the current theory, that caseine was rendered soluble in milk by means of an alkali, cannot be true. #### Zine Water Tanks. The Lyon Medical contains an article, by M. Zinrek, who has examined water which had long been kept in such tanks He has found that the water dissolves so much the more zinc as it contains more chlorides, such, for example, as the chloride of sodium. The water also takes up larger quantities of zinc in proportion to the length of contact. Boiling does not, however, precipitate the zinc from water charged with the metal. A sample of the former was tried, in which the ched chlorides were in small proportion, but which had been a long time in a zinc tank. As much as fifteen grains of zinc was found in each quart. To prevent this state of things the author advises the zinc tanks to be coated inside with an oil paint, the bases of the paint being ocher or asphalt. No minium, ceruse, or carbonate of zinc should, however, be used. Fifteen grains in a quart seem an enormous proportion, nor does the author say whether he found the actual metal or a salt of oxide of zinc. Better than painting it, is to discard its use for this purpose altogether. CLOVES are the dried unexpanded flower buds of the clove tree, a celebrated spice cultivated on the island of Amboyna in Sumatra, Zanzibar, Bourbon, and Cayenne; the culture and trade in this article was a monopoly in the hands of the Dutch for many years. The imports into the United States are about 200,000 po uds annually; and into England about 1,000,000. The name is derived from the resemblance of the spice to small nails, and in all countries it is called by a name The Hartford Steam Boller Inspection and Insurance Company. The Hartford Steam Boiler Inspection and Insurance Company makes the following report of its inspections in the month of May, 1871: During the month, there were 644 visits of inspection made, and 1,201 boilers examined-1,064 externally and 391 internally, while there were 120 tested by hydraulic press ure. The number of defects discovered by these examina tions is large, being 438, of which 70 were regarded as dan gerous. No one can tell what may have been the result, had they remained neglected for a longer period. It is always best to repair defects of any kind in season, and by so doing prevent what otherwise may lead to serious difficulty. These defects in detail were as follows: Furnaces out of shape, 17-1 dangerous; fractures, in all, 22-9 dangerous; burned plates, 24-4 dangerous; blis tered plates, 64-6 dangerous; cases of sediment and deposit 75-3 dangerous; cases of incrustation and scale, 63-3 dangerous; cases of external corrosion, 19-3 dangerous; cases of internal corrosion, 21-1 dangerous; cases of internal grooving, 3; water gages out of order, 20-3 dangerous; blow-out apparatus out of order, 9-4 dangerous; safety valves overloaded, 13-1 dangerous; safety valves stuck fast in their seats and inoperative, 5-all dangerous; pressure gages out of order, 9-4 dangerous, varying from-17 to +8; cases of deficiency of water, 2-both dangerous; broken braces and stays, 10-4 dangerous; boilers condemned, 4-all During the month there were 4 serious boiler explosions by which 12 persons were killed and 4 wounded. In two of these cases the boilers were under government inspection. What condition the inspectors found them in, we have no means of knowing, but we must believe that the examinations were very inefficiently made, or that the boilers were under the management of careless and ignorant men. CHAMOIS, or shammy leather, is leather made from various kinds of skins dressed with fish-oil, which is hammered or beaten into the pores of the skin. The leather, partially dried and washed in alkali, becomes soft and pliable The true shammy leather, which, however, is very rare, is made from the skin of the chamois, a species of the antelope tribe of animals, which inhabits the Alpine mountains. #### Advertising Agencies. "It is a fact that all those persons doing a business which requires extensive advertising, and who from the mode of conducting it are able to arrive at a close approximation of the results produced by each separate investment in this way, are universal in the opinion that better contracts can be secured through a well-established advertising agency, like that of Goo. P. Rowell & Co., New York, than can be obtained from publishers direct, no matter how familiar with rates and papers the advertiser may be. It stands to reason that an agency controlling patronage to the extent of from fifty to one hundred thousand dollars per month should be able to secure favors which would not be accorded to any mere individual, even if we omit entirely the benefits which they must derive from their extensive experience." #### Business and Bersonal. The Charge for Insertion under this head is One Dollar a Line. If the Notice exceed Four Lines, One Dollar and a Half per Line will be charged. The paper that meets the eye of manufacturers throughout the United States-Boston Bulletin, \$4 0) a year. Advertisements 17c. a line For the best, purest, and most economical Machinery Oils, of all kinds, send to Oil House of Chard & Howe, 134 Maiden Lane, N. Y. Gang Lathe .- See advertisement on last page. A Patent for sale .- A good investment for a firm or person with capital to manufacture it. Patterns complete. Address, for full description, Lock Box 356, Lockport, N. Y. Patent Agency.—Persons having Patents, or small Patented Articles, to sell, will do well to write or call on J. N. Bebout, Oberlin, Ohio Manufacturers of Fire Engines (hand or steam) and Hose, dease send circulars, with prices, etc., to J. P. Hale, Mayor, Charleston Kanawha C. H., West Va. To Watch Repairers.—Compound for
tempering pivot drills warranted to make a drill ten times as strong, with the required hardness, as an ordinary drill. Price \$2.00 per package, with instructions for use. James H. Flynt, South Bend, Ind. Globe Turbine Water Wheel, 74 inch diameter, under 16 feet head, 12x12-100 horse power. Andrew J. Payne, inventor, Unionville, Conn Engine Lathe wanted, about 30 inch swing, 12 feet bed, in good rder. Pratt & Co., 87 Chambers st., and Buffalo, N. Y. Stockholders learn what their companies are doing by reading the RAILBOAD GAZETTE. Mitchell's Grindstone Depot-310 York ave., Philadelphia. Glass Cutters' Wheels. J. E. Mitchell, Philadelphia, Cancer cured by a process almost painless in its operation. No knife, arsenic, or black plaster used. Send for address of parties cured to Dr. Carpenter, Newark, N.J. Oak Tanned Leather Belting and Manufacturers' supplies. Greene, Tweed & Co., 18 Park Place Blake's Patent Belt Studs, the best and cheapest fastening for Leather or Rubber Belts. 40,000 manufacturers use them. Green Tweed & Co., 18 Park Place. "American Manufacturer's Review," Pittsburgh, goes over the whole country. Subscription, \$4. Advertisements, 15c. per line. Try it 1 year Improved mode of Graining Wood, pat. July 5, '70, by J. J. Callow,Cleveland,O. See illustrated S. A., Dec. 17, '70. Send stamp for circular. The Philadelphia Scientific Mechanics' Circle will answer any anical question for 25 cts. Address as above, 125 N.7th st., Philadelphia. Electrical Instruments, Models, etc., made to order, and Gear Wheels and Pinions cut, by W. Hockhausen, 113 Nassau st., Room 10, N. Y. Pack's Patent Drop Press. For circulars address the sole manufacturers, Milo, Peck & Co., New Haven, Ct. House Furnishing line, either on royalty or become sole proprietor for the United States. Address J. H. Beardsley, 119 Nassau st., New York. Experimental Machinery and Models, all sizes of Turned Shaftlng, Paper Box, Paper Collar, and Bosom Plaiting Machines, Self-operating Spinning Jack Attachments. W. H. Tolhurst, Machine Shop, Troy, N. Y. Best Scales,-Fair Prices. Jones, Binghamton, N. Y. Steam Watch Case Manufactory, J. C. Dueber, Cincinnati, Ohio. Every style of case on hand, and made to special order. Agents Wanted-on a new plan-to sell a patent Collar Stud. Send for Circular. S. E. Williams, Hartford, Con- L. & J. W. Feuchtwanger, Chemists, 55 Cedar st., New York, manufacturers of Silicates of Soda and Potash, and Soluble Glass For Hydraulic Jacks, Punches, or Presses, write for circular to E. Lyon, 470 Grand st., New York. Wanted.—A responsible dealer in every town in the United States, to sell "The Tanite Co.'s "Emery Wheels and Emery Grinders Extra inducements from May 1st. Send for terms to "The Tanite Co.," The new Stem Winding (and Stem Setting) Movements of E Howard & Co., Boston, are acknowledged to be, in all respects, the most desirable Stem Winding Watch yet offered, either of European or American manufacture. Office, 15 Maiden Lane, New York. Belting that is Belting.—Always send for the Best Philadelphia Oak-Tanned, to C. W. Arny, Manufacturer, 301 Cherry st., Phil'a. Send your address to Howard & Co., No. 865 Broadway, New York, and by return mail you will receive their Descriptive Price List of Waltham Watches. All prices reduced since February 1st. Ashcroft's Low Water Detector, \$15; thousands in use; can be applied for less than \$1. Names of corporations having thirty in use can be given. Send for circular. E. H. Asheroft, Boston, Mass. To Cotton Pressers, Storage Men, and Freighters.—35-horse Engine and Boller, with two Hydraulio Cotton Presses, capable of pressing B bales an hour. Machinery first class. Price extremely low. Wm. D. Andrews & Bro., 414 Water st. New York. Tin Presses & Hardware Drills. Ferracute Works, Bridgton, N.J. Brown's Coalyard Quarry & Contractors' Apparatus for hoisting and conveying material by iron cable. W.D. Andrews & Bro,414 Water st., N.Y. American Boiler Powder Co., P. O. Box 315, Pittsburgh, Pa. Carpenters wanted—\$10 per day—to sell the Burglar Proof Sash Lock. Address G. S. Lacey, 27 Park Row, New York. Manufacturers' and Patentees' Agencies, for the sale of manufactured goods on the Pacific coast, wanted by Nathan Joseph & Co., 619 Washington street, San Francisco, who are already acting for several firms in the United States and Europe, to whom they can give reference For mining, wrecking, pumping, drainage, and irrigating ma chinery, see advertisement of Andrews' Patents in another column A. G. Bissell & Co. manufacture packing boxes in shooks at Twelve-horse Engine and Boiler, Paint Grinding Machinery Feed Pumps, two Martin Bollers, suitable for Fish Factory. Wm. D. Andrews & Bro., 414 Water st., New York. Improved Foot Lathes, Hand Planers, etc. Many a reader of this paper has one of them. Selling in all parts of the country, Canada, Europe, etc. Catalogue free. N. H. Baldwin, Laconia, N. H. Cold Rolled-Shafting, piston rods, pump rods, Collins pat. double compression couplings, manufactured by Jones & Laughlins, Pittsburgh, Pa For Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, etc. The Merriman Bolt Cutter-the best made. Send for circulars. H. B. Brown & Co., 25 Whitney ave., New Haven, Conn Glynn's Anti-Incrustator for Steam Boilers-The only reliable preventive. No foaming, and does not attack metals of bollers. Price 2 cents per lb. C. D. Fredricks, 587 Broadway, New York. For Fruit-Can Tools, Presses, Dies for all Metals, apply to Bliss & Williams, successor to May & Bliss, 118, 130, and 123 Plymouth st., Brook lyn, N. Y. Send for catalogue. Presses, Dies, and Tinners' Tools. Conor & Mays, late Mays & Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. Y. Taft's Portable Hot Air, Vapor and Shower Bathing Apparatus. Address Portable Bath Co., Sag Harbor, N. Y. (Send for Circular.) Dickinson's Patent Shaped Diamond Carbon Points and Adjustable Holder for dressing emery wheels, grindstones, etc. See Scientific American, July 24 and Nov. 20, 1869. 64 Nassau st., New York. Winans' Boiler Powder.—15 years' practical use proves this a cheap, efficient, safe prevention of Incrustations. 11 Wall st., New York. Read J. H. Beardsley's card in this column; it is worth look- To Ascertain where there will be a demand for new machinery or manufacturers' supplies read Boston Com ercial Bulletin's Manufactur ing News of the United States. Terms \$4 00 ayear. #### Answers to Correspondents. SPECIAL NOTE.-This column is designed for the general interest and in struction of our readers, not for gratuitous replies to questions of a purely business or personal nature. We will publish such inquiries, however when paid for as advertisements at 1 00 a line, under the head of "Busi ALL reference to back numbers must be by volume and page CHEAP BATTERY .- I would answer F. R. S. that the chear battery described by me March 11, 1871, is rightly described by him, and will work if connections be properly made. I have just set one up for a physician to run a medical apparatus, and it works to a charm. hundreds of electrotypes made by such battery. Let F. R. S. lumers, both poles in solution of sulphate of copper, and see if one will not be dissolved and the other increased. Of course it will not make an electric light to knock down an ox or run a saw mill, but it will do any ordinary copper electrotyping, or work any small magnetic apparatus .- A. G., of MENDING BROKEN CASTINGS.—If the castings J. G. G. wishes to make from a broken one as pattern, requires to be in all respects ex-actly like it, that is, if plating the broken one together (for pattern) would spoil the shape of the new one, and cementing would make it too large, I would suggest that it might, with careful drilling, be put together with small and short doweling pins,-J.G. H., of Pa. F. S., of Conn.-The amount of sulphuric acid and chalk necessary to produce 10 cubic feet of carbonic acid would be 19 ounces, avoirdupols, of the acid, and 45 ounces of chalk. GEAR CUTTING ON FOOT LATHE.—The answer of C. H. J. to B. B. L., of Md., gives a very crude way of cutting gear with a foot lathe. I have tried the same plan; but with a revolving cutter, we can ent ten teeth or more, to one that can be cut with a chiesl or shaping tool. The plan that I use (but I make no claim to it) is as follows: In the first place we suppose that the lathe has a slide rest, that can be put to any angle, for cutting beyel or miter wheels. I have my lathe back to the wall, but it can be placed in any position, by putting two stems or posts up from the frame or from the wall. I place one over the back edge of the fly wheel, with a pulley running vertically, parallel with the lathe frame. On the other post, at the right hand side, I place a pulley running horizontally. In the Trest, I put a post with a pulley on the top, running horizontally. This is used both as a quick and a tightening pulley. I place anothe pulley over the front of the fly wheel, running vertically, and parallel with the frame of the lathe. All those pulleys are only to give horizontal motion to the lathe band, from the fly wheel, so as to turn the shaft which carries the cutters vertically, the frame for which is fixed in the tool post of the slide rest. There may appear to be more pulleys than are necessary, and I have tried to do with less, but find this way the best. I put all the pulleys about 2½ inches above the line of center of lathe. A black-smith can make a frame to hold the cutter shaft, out of iron ½ by ½ inches, and 10½ inches long, bent at each end at right angles, ½ inches from the ends, so as to leave about 5½ inches between the ends to carry the cutter. I drill holes through each end for a screw center with jamb nuts, so that the shaft with the cutter frame in the tool post. The cutters have to be made to suit the wheel to be cut. I get a dial plate, and place it on the pulley mandrel of the
lathe—almost any watch maker will show how that is arranged. Any kind of gear wheel can be cut by this arrangement, whe Wanted .- A reliable party to manufacture a specialty in the GEAR CUTTING ON FOOT LATHE .- The answer of C. H. J. to pass right inside the wheel to be cut, and putting another pulley on the back of the slide rest, to earry the band out again. I know these will all work, as I have cut inside wheels, from 9 inches inside to 2 inches, without having to touch them with a file .- W. H. B., of III. CHEAP BATTERY .- Notwithstanding that F. R. S. has not CHEAP BATTERY.—Notwithstanding that F. R. S. has not succeeded in making his flower pot battery and sait solution work, such an arrangement forms, for some purposes, a good and efficient battery. It is simply a Daniell's battery. By using sait and water, it makes a little less powerful battery than it would were sulphuric acid (say 24 parts to 1 of water) used. I would recommend F. R. S. to subject his copper plate to a dull red heat, and while hot, plunge it is water, to remove the oxide from its surface. The connecting rod should be soldered to the copper plate, and his zinc plate should be bright and clean. Let it be dipped into hot soda or potash solution to remove grease, and then into a weak solution of sulphuric acid (say i part acid to 59 parts water) for about one minute. This will remove all oxide from its surface. If he will amalgamate the zinc with mercury, the battery will work all the better. This minute. This will remove all oxide from its surface. If he will amalgamate the zinc with mercury, the battery will work all the better. This arrangement will give very fine deposits of copper or silver, but it is too weak for gold, as it will give a pale yellow color. For electromagnetic purposes, I part of sulphuric acid to from 12 to 24 parts water will work well. In a short time, however, the zinc will become of a dirty drab color, in consequence of a deposition of copper on its surface. A very small portion of sulphate of copper passes through the porous cell; the zinc plate deprives the copper of its oxygen; and the copper, as a consequence, is deposited on the zinc. Keep to it, F.R.S., as I have done, and you will succeed.—T. T., of D. C. succeed .- T. T., of D. C. CHEAP BATTERY.—Observing in your issue of May 20th, the remarks of "D. B., of N. Y.," in reply to "F. R. S. and friends," in regard to the construction of a cheap battery, I desire to submit the followgard to the construction of a cheap battery, I desire to submit the following as my experience: I constructed a battery according to the formula laid down by "A. G.," that is, according to my conception of his instructions. I placed the rine in a solution of ½ pound of Epsom saits (instead of common sait), and the copper in a porous flower pot containing a solution of sniphate of copper (¼ pound). This I found to work admirably, and, when connected with an electromagnetic machine, to give shocks too severe to be withstood by most persons. This battery worked finely for several weeks, when the porous pot was accidentally broken. I substituted another, but it would not work for the reason, as I conceived, that the pot was not sufficiently porous; but upon changing the pot for one which was found to be porous, the battery again worked and continued in force for some time. If the solutions were placed wrong, as D. B. contends, how does he account for the successful working of my battery?—G. A. B., of D. C. battery?-G. A. B., of D. C. A. M., of N. Y.-Multiplying the diameter of a circle by 3 0075, will not give even a very coarse approximation to the area of a circle. Multiplying the square of the diameter by 0 7853 gives a very fine approximation, so near indeed as to be sufficiently accurate for any prac- S. A. R.-A combined atmospheric and lifting pump will enable you to raise the water to the hight required. It is possible that at the hight of your place above the sea level, the atmospheric pump alone might fall. Any dealer in pumps will supply you, or refer you to some one BLUEING SMALL ARTICLES .- Make a box of sheet iron, fill It with sand, and subject it to a great heat. The articles to be blued must be finished and well polished. I immerse the articles in the sand, keeping watch of them until they are of the right color, when they should be taken out, and immersed in oil. This is the way many pistol barrels are blued. CLEANING GUN BARREL - I saw a statement in an old paper that mercury rolled about in a gun barrel would clean it when foul, and that the same mercury would also do for several successive cleanings. F. 8. of Conn. [We doubt the efficiency of this, but if mercury would clean gun barrels, we think it an unnecessarily expensive substance for C. C. C. of Ohio,-We think a wooden would be far preferable to a concrete vat for holding vinegar. Our opinion is that both the vinegar and the concrete would be injured by the contact with each other. #### APPLICATIONS FOR EXTENSION OF PATENTS. SHEARS FOR CUTTING METAL.-Timothy F. Taft, Worcester, Mass., ba petitioned for an extension of the above patent. Day of hearing, August 2 APPARATUS FOR SUSPENDING EAVES TROUGHS.—James A. Watrous, Green Spring, Ohio, has petitioned for an extension of above patent. Day of hearing, August 16, 1871 #### Value of Extended Patents. Did patentees realize the fact that their inventions are likely to be more productive of profit during the seven years of extension than the first full term for which their patents were granted, we think more would avail hemselves of the extension privilege. Patents granted prior to 1861 may be extended for seven years, for the benefit of the inventor, or of his heirs in case days before the termination of the patent. The extended time inures to the benefit of the inventor, the assignces under the first term having no rights under the extension, except by special agreement. The Governmen fee for an extension is \$100, and it is necessary that good professional service be obtained to conduct the business before the Patent Office. Full informa-tion as to extensions may be had by addressing MUNN & CO., 37 Park Row #### Becent American and Loreign Latents. nder this heading we shall publish weekly notes of some of the more promi-nent home and foreign patents. Rollino Metal.—Charles White, William Lewis, Thomas Strickland, and Samuel Caddick, of Spuyten Duyvil, N. Y.—Power is applied at each end of a revolving frame through a system of bevel gearing. Each of the rolls is revolved on its own axis, simultaneously with the frame and in the same direction, but at reduced speed. Revolving the rolls and frame in the same direction counteracts the revolving motion imparted, by the rolls to the iron, in manufacturing long bars. The rolls are placed obliquely to each other so that their action is not only to crush but to clongate. The iron or other malleable metal is fed into the machine through a hollow journal, and is caught by the rolls and gradually worked forward until it is forced out of another hollow journal in a finished state. Cabbiage Top.—William Bander of Circleville Obje. The protect here CARRIAGE Top. -William Bander, of Circleville, Ohio. -The upright brace is pivoted to the second bow from the back of the frame. From this point extends a herizontal jointed brace forward to the front brace, and another horizontal jointed brace, backward to the rear bow. The horizontal braces are worked by tongues projecting from the upper end of the upright brace. SEWING MACHINE FOR BOOTS AND SHOES.—Nathan M. Rosinsky, of New York city.—The details of this machine are numerous, as the nature of the Nork city.—The details of this machine are numerous, as the nature of the invention would imply, comprising an adjusting apparatus for bringing the high and low places, in the sole and in the shank, into the proper position for the action of the needle; a suitable holder for the last and the boot or whoe stretched upon it; a hooked shaped needle working through what the inventor styles a tubular discharger, for easting off the loops of thread formed by the needle in passing through the leather; with apparatus for giving the needle motion, etc., only to be understood by reference to the drawings. Seven claims are made in the patent specification, covering devices which seem well adapted to make the machine an efficient one. Harvesten Bixder.—This invention furnishes an attachment for harvesting machines, whereby the cut grain is taken as it falls upon the platform, pushed back, gathered into gavels, bound securely, and then pushed off the machine. As might be expected, it is somewhat complicated, yet apparently not so much so as to derogate from its efficiency and durability. The method, by which the binding cord is passed about the gavel and tied, is a most ingenious piece of mechanical invention. The cord is carried on a spool, and is wound off as wanted, and cut after tying, the whole being performed automatically. As a specimen of elaborate invention, and reasoning back from ends to means, this invention will compare favorably with anything lately brought to our notice. The inventor is Joseph Barter, of La Croase, Wis. PROPELLER.-Reuben W. Heywood, Baltimore, Md.-This invention re-Paper Liker.—Reusen w. Reywood, Baltimore, Mu.—Internation re-lates to an apparatus for propelling canal boats, in which a reciprocating carriage, armed with hinged blades that are placed transversely of the boat, travels back and forth lengthwise of the boat, the said blades, when the carriage is moving in one direction extending down into the water, and communicating to the boat the motion derived from the resistance of the water, and said blades, when the carriage is moving in the other direction, folding up against the bottom of the boat, and consequently imparting no SELF-FILLING BORRIX WIYDER.—Robert H. Smith, Baltimore, Md.—This nvention has for its object to lay thread from the spool evenly upon
the bobbin of a sewing machine shuttle, and consists of a shaft, on which is cut a right and left screw, the threads of which occupy the same space, intersecting each other at diametrically opposite points; and in a fork which follows one of the threads from end to end, and then enters the other thread and travels back again; and in a carriage which holds the fork and receives a reciprocating movement back and forth; and in a thread guide connected with said carriage, which, by means of said reciprocating motion, lays the thread evenly muon the hobbin. thread evenly upon the bobbin. GLOVE.-Remus D. Burr, Kingsboro, N. Y .- This invention relates to GLOVE.—Remus D. Barr, Kingsboro, N. Y.—This invention relates to gloves whose backs are make of some cheaper material such as cloth, and consists in a front piece, cut with a tongue on its thumb side, at the lower corner, and with a recess between said finger and the rest of the front piece, the tongue forming a re-inforce for the thumb side of the hand, and the recess being for the reception of a tongue formed on the thumb piece. The invention also consists in a thumb piece cut with a tongue on its palm side for the purpose of being joined to the aforesaid tongue of the front piece. and cut with another tongue that fits into the recess, aforesaid, of the front piece at or near the base of the thumb, for the purpose of giving the space necessary for the free action of the thumb. REGULATOR FOR SEWING MACHINES.-Alexander B. Bates, Baltimore Md.—This invention relates to an improvement on the patent of T. A. Macauley, January 24, 1871, wherein is described a mechanism for varying the length of the stitch, which mechanism is connected with the inner end of the shaft that passes through the side of the cloth table, and is operated by turning said shaft by hand, by means of a knob placed upon its operated by turning said shaft by hand, by means of a knob placed upon its outer end. The invention consists in an apparatus for automatically turning said shaft, for the purpose of regulating the feed, combined with a graduated plate, which answers the purpose both of indicating how many stitches will be produced to the inch at each different position of the lever by which said apparatus is worked, and of holding said lever in any position desired. GIEDER RESTS FOR TIMBERS.—This is the invention of Jonathan Preston, of Boston, Mass. It consists of a rest or bearing of cast metal, so made that it can be slipped on to the lower flange of the girder before the latter is put in its place. The ends of the rods project from the girder, so as to give a fair and broad bearing for the timbers which the girders are destined to sup- EXTENSION TABLE. - In this table the extension is performed by a screw EXTENSION TABLE.—In this table the consistency of the nut revolves in a plate attached to the table, the screw revolving in, but having no longitudi nal motion through, the plate. The screw turns by means of a crank key, in a tube attached at one end to the extension end of the table; or tubes made to telescope one within the other may be used, either with or without the screw, the parts of the table being made to keep their proper relation to each other by means of rabbeted strips and sildes. Invented by F. Sou- DOVETAILING MACHINE. - John B. Ritchey, of Pomeroy, Ohio. In this ma-DOWFTALLING MACHINE.—John B. Editory, or Pointroy, only. In this machine, the board to be cut is clamped upon a table, which is guided by silding way and gages, so as to bring the board into contact with the cutter at the desired intervals, the guides, gages, and stops being so arranged that the cutting may be done at wider or narrow intervals, as required. The manner. The mandrel carrying the cutter is fixed in a vertically sliding frame or gate, which is worked by a hand lever. While much cheaper than some other forms of doyetalling machines running gan sof cutters, this machine can, we think, do excellent work. PLOW.—Thomas H. Reynolds, of Rome, Ga.—The standard is of metal, bifurcated at the lower end. The plowshare has a projecting lug on the back-side, which rests upon a shoe formed at the front end of a slotted bar, the side, which rests upon a shoc former at the from end of a stotled bar, the share and the shoe being locked together by a bolt or pin. A suspended slide, arranged on the slotted bar, forms the land side of the plow, and from the van of the slotted bar descends a shank, having a small pointed share, penetrating considerably deeper than the regular depth of the furrow, and STEAM MANGLE.-Wherever steam can be applied, it is found to be the best and most economical conveyer and distributer of heat. Taking advan-tage of this valuable property of steam, P. Rundquist, of New York city, has invented a mangle in which the rollers are heated by steam, admitted through stuffing boxes in the ends of the journals. The rollers can be heated to any desired temperature by regulating the pressure of steam in the boiler which suppties them. The rollers are compressed together by stirrups, rods, and House Jack.—Hackley T. Morrison, Lawrenceville, Va. —This invention has for its object to enable a screw jack to work continuously, (either while lifting or lowering, and while the lever by which the screws are rotated is lime. turning back, as well as while it is turning forward), to the end that there may be no lost motion, which object is accomplished by the provision of two separate screws, arranged one above the other, one of which raises or lowers itself in the foot-piece, while the other raises or lowers the head-piece, said crews working alternately. HEMMER AND BINDER FOR SEWING MACHINE. -Milo Harris, Jamestown N. Y.—This invention consists in the combination with a hemmer and binder, having a seroil for turning a hem on cloth, of a plate pivoted at one end to the 'shank of the hemmer, extending through a slot in the back of the scroll, and terminating at such a point within the scroll as to serve as a stop to prevent the cloth, while running through the hemmer, from turning up at the edge against the back of the scroll, and making an uneven hem. WRINGER.-Cyrus E. Carter, Martinsville, Ohio.-This invention relates mainly to the application, to the upper roller of a wringing machine, of an apparatus worked by a treadle, for drawing said roller downward, so as to make it press the article to be wrung between itself and the lower roller with all necessary force. CHURN.—This is the invention of Benjamin H. Steele, of Barnesville, Ohio Dashers of two peculiar forms are attached to a vertical shaft, and made to revolve back and forth by means of a bevel pinion attached to the lower end of the shaft, and a sector bevel gear, worked by a hand lever. The sec-ond or gathering dasher is in the form of the letter S, and replaces the first when the butter is ready to gather. DEVICE FOR OPENING AND CLOSING WINDOW BLINDS.—The billed is pro-ided with a bar, bent at right angles, so as to form a long staple, the body of which forms a slide for an eye in the end of a bar pivoted to the jamb of the window casing. This apparatus is placed low down near the window sill. A notched bar passes through under the sash, the notches of which engage with a keeper fastened to the window sill, so that the blind may be opened to any desired position and held there. Invented by Frederick Shattner, of Wilmington, Del. MORTISING BLIND STILES.—This invention consists in the application of ingenious, and, we think, efficient, devices for holding the stile of the blind while being mortised and bored; and also in the feeding of the stile. It is the invention of Lawe M. Collins, of Lebanon, N. H. Any bevel or angle of the mortises, required in such work, is secured by the devices used. Saw Mill.-The line of teeth in the saw is made rounding or convex toward the log to be cut; and the bottom of the sash is made to move to-wards and from the wood during its downward stroke by means of a rock wards and from the wood during its downward stroke by means of a rock shaft connected with the lower part of the sash by a forked arm, the forked end joining the sash. The rock shaft is moved by an eccentric on the crank shaft of the saw, through a suitable connecting rod joining the eccentric and a crank on the rock shaft. The saw is moved backwards until half way down, then forward till about seven eighths of the way down, then back-ward again to the end of the stroke. The setting of the eccentric on the crank shaft governs this motion; and the inventor claims that a smoother cut can be thus produced than by methods hitherto employed. Invented by Charles C. Lewis, of Ray City. Mich. Charles C. Lewis, of Bay City, Mich. PRUNING SHEARS.—Albert Barling, Westchester, Pa.—This invention reates to a pruning shears, in which the cutting is effected by a blade working past a serrated hook, the edge of the blade that comes next to the hook being beveled to prevent its catching on the latter, and the edge of the hook next the blade being longitudinally recessed, for the same purpose. INVALID BEDSTEAD. - A. J. Russell, Baltimore, Md. - This invention con INVALID BEDSTEAD.—A. J. Russell, Baltimore, Md.—This invention consists in an apparatus for raising and supporting one or both of the patient's legs, said apparatus being composed of a pair of standards connected at their lower ends with the windlasses that are placed, one at each side of the cot, on which the patient lies, the upper ends of said standards being united by a cross bar that passes transversely above the cot, on which cross bar is a sliding frame bearing pulleys, with which is connected the cord that is used for elevating the patient's leg. SAWING MACHINE.—H. P.Ohm, Baltimore, Md.—This invention relates to a portable sawing machine for the use of farmers and mechanics, and con-sists principally in the mechanism whereby the feeding of the carriage that supports the wood to be sawn is effected from the same
shaft that operates RAILBOAD CAR RUNNING GEAR.-Reuben Winslow, Lock Haven, Pa.-RAILBOAD CAR RUNNING GEAR.—Reaben Winslow, Lock Haven, Pa.— This invention has for its object to practically enlarge the outer wheels of a railroad car and diminish the inner wheels, during the time the car is running on a curve, for the purpose of enabling the outer wheels to travel the greater distance, which they have necessarily to accomplish, as compared with the inner ones, without the slipping of the wheels on either side along the track, or the binding and excessive friction which attend the passage of running gear, as ordinarily constructed, over curves. #### Queries. [We present herewith a series of inquiries embracing a variety of topics of greater or less general interest. The questions are simple, it is true, but we prefer to elicit practical answers from our readers.] 1.-Noisy Gears.-I am in trouble with two large cog wheels, which appear to be running as near right as can be, yet they make such a noise, and always have, that I can hardly stand it, and I fear for my nearing if I continue to run them in this way. I have tried everything that I know of, and if any of your correspondents can give me any information on he subject, I shall ever feel grateful for the same. -S. R. -Botts.—Will some kind reader give me a preventive for boils, which will do no injury to the system?-W. E. 3.-Cutting Screws.-In cutting screws with a lather can the connection between head and feed screw be so arranged that the feed screw alone can be reversed without getting out of time, so as to avoid a cross belt to the counter shaft?—W. E. 4.—Softening Rubber Hose.—I have rubber hose for my pump, that, lying idle, have become hard and stiff. How can I soften then and make them pliable ?—J. P. 5.—House Moth.—Just at this time many of your readers are particularly interested in knowing as much as possible about the other woolen fabrics to take care of. Will some of your scientific, practi-cal correspondents give us a sketch of its natural history, and of the best mode of fighting it, both offensively and defensively ?—E. A. T. 6.-Drawing Ink.-I wish to procure a good drawing ink one that when used in the ruling pen will produce a deep black, and not a blue or gray one? Where can I procure such ink, or how can I make it?— 7.—SIZING CONE PULLEYS.—Will some of your readers tell equally light on any and all of the different speeds? also, when a train of dif-ferent sized pulleys is set in motion by one driver, what is the best rule to find out the speed of the last pulley, as compared with that of the first 8 .- Galvanizing Cast Iron .- Can some one give me som information about galvanising cast fron? I can do wrought from withou any trouble, but cannot make the gine adhere to the cast. Any information tion in regard to galvanizing will be gladly received. Do parties that do galvanizing on a large scale allow visitors in their works?—T. L. 9 .- CLEANING GUN .- F. S. S., of Ohio, says he has been using a rifle gan for fifteen years, and has to wipe or clean it for the first For the benefit of rife shooters, will be please state what kind of ime. For the beneft of rifle shooters, will be please state what kind of powder he uses? I find that all of our Eastern powder leaves a residue in the cone or breech, which necessitates the taking of the gun apart to clean, after a few month's use. Another thing: if I did not wipe the gun occasionally, it would be impossible to push the ball home, without tearing the patch, although it is a very fine rifle.—C. W. L. 10.-Canal Boats.-Seeing in your three last issues of the SCIENTIFIC AMERICAN, the very liberal reward offered by your State for a motor other than animal power for canal purposes, adaptable to the present construction of boats, your correspondent wishes to know the following: 1st. Average depth of canal. 2d. Build of said boats most common in use wall sided or not. 3d. Average draft of boat when light, and also when laden with cargo. Answers to the foregoing will help me considerably,—G. T. #### Inventions Patented in England by Americans. May 2 to May 8, 1871, inclusive. [Compiled from the Communioners of Patents' Journal. ACETIC ACID.—Theodore Schwartz, New York city. Lamp Burser.—R. S. Merrill, Boston, Mass. Liquid Meter.—J. F. de Navarro, New York city. Oscillating Engine.—J. Goulding, Worcester, Mass. Pulverizing Ores.—Van B. Ryerson, New York city. Retorr.—Junius Gridley, New York city. Sewing Machine.—W. G. Beckwith, Newark, N. J. Substitute for Hair Cloth.—J. J. Comstock, Providence, R. I. Waterproof Compound.—P. E. Minor, Schenectady, N. Y. #### Foreign Patents. The population of Great Britain, is 31,000,000; of France, 37,000,000 Be um. 5,000,000; Austria, 35,000,000; Prussia, 40,000,000; and Russia, 70,000,000 atents may be secured by American citizens in all of these countries. Tow is the time, while business is dull at home, to take advantage of these now is the time, while desires is duit at home, to take advantage of these mmense foreign fields. Mechanical improvements of all kinds are always a demand in Europe. There will never be a better time than the present take patents abroad. We have reliable business connections with the orincipal capitals of Europe. A large share of all the patents secured in foreign countries by Americans are obtained through our Agency. Addiress Muxix & Co., 37 Park Row, New York. Circulars, with full information on foreign patents furnished free. tion on foreign patents, furnished free #### Official List of Latents. #### ISSUED BY THE U. S. PATENT OFFICE. FOR THE WEEK ENDING MAY 23, 1871. Reported Officially for the Scientific American. SCHEDULE OF PATENT FEES: | | On each Caveat | |---|---| | 9 | | | | | | a | | | | | | | Un appeal to Commissioner of Patents. | | | On application for Releaste | | | On application for Extension of Patent | | | Un granting the Extension | | | On bling a Disclaimer. | | 3 | | | | | | | On an application for Design (fourteen years) | | | | For Copy of Claim of any Patent issued within 30 years. S1 A sketch from the model or drawing, relating to such portion of a machine as the Claim covers, from upward, but usually at the price above-named. timued since 1826, we can sup-uting upon the amount of hab the number of elects. As to price of drawings, in each case, may be had by #### MUNN & CO., Patent Solicitors. 37 Park Row. New York- Patent Solicitors. 37 Park Row. New York. 115,010.—Settee.—W. C. Adams, W. B. Mayhew, West Tisbury, Mass. 115,011.—Anchor.—A. B. Babbitt, Taunton, Mass. 115,012.—Door Securer.—B. F. Baer, Lancaster, Pa. 115,013.—Root Cutter for Plows.—J. W. Baker, Elkton, Md. 115,014.—Heating Stove.—Frank Barclay, Aurora, Ill. 115,015.—Vapor Burner.—W. E. Bartlett, Newburg, N.Y. 115,016.—Wagon Tongue Support.—Wm. Beers, Milan, O. 115,017.—Seasoning Hubs.—A. Benninghofen, Hamilton, O. 115,017.—Seasoning Hubs.—A. Benninghofen, Hamilton, O. 115,018.—Cooler.—T. Bergner, S. Zeisse, Philadelphia, Pa. 115,029.—Flax Separater.—James Boyce, Muncie, Ind. 115,021.—Stove Grate.—Pardon Boyden, Amsterdam, N. Y. 115,022.—Pulley Block.—G. C. Brown, Brooklyn, N. Y. 115,023.—Spittoon.—S. G. Cabell, Washington, D. C. 115,024.—Eawth Closet.—R. A. Cannall, New Orleans, La. 115,025.—Damper.—E. H. Clinton, W. H. Lavinia, Chicago, Ill. 115,026.—Harrow and Planter.—R. J. Colvin, Lancaster, Pa. 115,027.—Heating Cars.—J. H. Connelly, Wheeling, W. Va. 115,029.—Cement-pipe Mold.—D.Copeland, Jr., Rochester, N. Y. 115,030.—Drain Pipe.—David Copeland, Jr., Rochester, N. Y. 115,031.—Roasting Furnace.—F. W. Crosby, Washington, D.C. 115,032.—Medicine.—C. P. Crossman, West Warren, Mass. 115,033.—Cultivator Plow.—David Culver, Kingston, Pa. 115,034.—Wagon Side Brace.—T.H. Daniels, Anderson, Ind. 115,036.—Sewing Machine.—P. Diehl, Lochring, Chicago, Ill. 115,038.—Door Stop.—M.V. Doyle, Jacob Behel, Rockford, Ill. 115,089.—Paste Machine.—Robert Duff, New York city. 115,040.—Handle Fastening.—E. F. Dunaway, Cincinnati, O. 115,038.—Door Stop.—M.V. Doyle, Jacob Behel, Rockford, Ill. 115,089.—Paste Machine.—Robert Duff, New York city. 115,040.—Handle Fastening.—E. F. Dunaway, Cincinnati, O. 115,041.—Inkstand.,—Thomas Duncan, Brookville, Md. 115,042.—Reversible Crib.—A. E. Eatob, Portland, Me. 115,043.—Bed Bottom.—M.W.Farber, Mount Pleasant, Iowa. 115,043.—Bed Bottom.—M.W.Farber, Mount Pleasant, Iowa. 115,045.—Lamp Wick.—John Farrell, Brooklyn, N. Y. 115,045.—Lamp Wick.—John Farrell, Brooklyn, N. Y. 115,045.—Corn Harvester.—D. C. Flint, Bardolph, Ill. 115,047.—Cleaner for Oil Well.—W.Forker, Rockland, Pa. 115,048.—Sewing Machine.—W. H. Fowler, W. Pettingall, Painesville, Ohio. 115,049.—Molder's Slicker.—W.J. Fryer, Jr., New York city. 115,059.—Draw Hook.—B. G. Gardiner, New York city. 115,051.—Sirup and Sugar.—J. J. Grosheinz, Logelbach, Fr. 115,052.—Harvester Rake.—James Harris, Janesville, Wis. 115,053.—Front Fall. for Planos.—A.H. Hastings, New York. 115,054.—Invalid Bedstead.—Wr. Heath, Bath, Me. 115,055.—Corn Harrow.—George Hill, Galva, Ill. 115,056.—Hollow Vessel.—W. F. Holske, New York city. 115,057.—Riding Plow.—B. C. Hoyt, Fort Atkinson, Wis. 115,058.—Motod Machine.—I. G. Hubbard, Nokomis, Ill. 115,059.—Lantern Globe Holder.—J. H. Irwin, Phila., Pa. 115,060.—Sewing Machine Caster.—H.Jones, Richmond, Ind. 115,061.—Harness Check Hook, etc.—W. V.Kay, Chicago, Ill. 115,061,-HARNESS CHECK HOOK, ETC.-W.V.Kay, Chicago, Ill. 11000—Harrison Patrone, Wo. V. Ray, Chiospo. II. 11000—Grave State of 115,062.—HANESS PAD TREE.—Wm. V. Kay, Chicago, Ill. 115,063.—Shutter Fastener.—Peter Keffer, Reading, Pa. 115,064.—Honseshoe Nails.—E.W.Kelley, Hamilton, Scotland. 115,065.—Artificial Limb.—S. B. Kepperling, T. B. Kreiter, Neffyule, Pa. SCIENTIFIC AMERICAN. 115.188.—CARDING MACHURE.—J. F. Fors, Lowell, Mass. 115.189.—LAND MEASURER.—Win. Frasius, Chatsworth, III. 115.187.—ROCK DRILL.—Gideon Frisbee, Titusville, Pa. 115.188.—SAMPLE
BOX.—J. C. W. Frishmuth, Philadelphia, Pa. 115.189.—SERINSEN MACHURE. J. GORIDING, O. 115.190.—PLATFORM SCALE. W. P. Goolman, Kanssis City, Mo. 115.191.—SEPINNIS MAGHURE. J. GORIDING, W. OCCEST. 115.192.—SCHOOL DESK.—G. H. Grant, Richmond, Ind. 115.193.—GRA-BURNING FORMACE.—J. Green, Philadelphia, Pa. 115.194.—TURNING LOGS.—D. S. Griffes, Flint, Mich. 115.193.—SONO CASE.—W. H. Grove, Philadelphia, Pa. 115.194.—TURNING LOGS.—D. S. Griffes, Flint, Mich. 115.195.—SONO CASE.—W. H. Grove, Philadelphia, Pa. 115.196.—FORGING ALES.—J. Harrington, Bridgeport, Conn. 15.157.—SEWISG MACHURE.—MICH Harris, Jamestown, N. Y. 115.198.—PNEUMATIC ENGINE, J. F. Haskins, Flichburg, Mass. 115.199.—PNEUMATIC ENGINE, J. F. Haskins, Flichburg, Mass. 115.200.—STRAMING APPARATOR.—L. M. Heery, Himsdale, Ms. 115.201.—THANBREL.—G. W. Helges, Franklintown, Pa. 115.202.—BLEACHING.—J. Helm, Jr., New Brunswick, N. J. 115.203.—STRAMING APPARATOR.—L. H. Helges, Rador, Ohio. 115.206.—HEEL FOIL BOOTS.—A. L. Holbrook, Fremont, Neb. 115.207.—THE KINDLER.—J. R. Hiles, Salem, Ohio. 115.208.—STRAM KNOINE.—J. B. Hotckiks, Naugatuck, Conn. 215.208.—STRAM KNOINE.—J. B. Hotckiks, Naugatuck, Conn. 215.209.—COTTON BOLZ.—J. Hughes, New Berne, N. C. 215.201.—BUKO BOUER.—W. A. Ives, New Haven, Conn. 215.202.—COTTON BOLZ.—J. Hughes, New Herne, N. C. 215.211.—BUKO BOUER.—W. A. Ives, New Haven, Conn. 215.212.—COLDIE Saw.—H. H. HUMPIPRY, and Henry Bick. 115.213.—CULTIVATOR.—Moses Johnson, Three Rivers, Mich. 115.214.—DUKO BOUER.—W. A. Ives, New Haven, Conn. 115.215.—ROACH ON BUG TARA—J. M. Keep, New York city. 115.216.—ETRE KINDLER.—J. R. Keeker, Philadelphia, Pa. 115.221.—SERAM KNOINE.—J. L. KACKER, Philadelphia, Pa. 115.222.—ALLOY.—G. M. Levi, Brussels, C. M. Kunzel, Liege, Belgium. 115.214.—DUKOLEW'S FLASK.—E. P. JORS, Keeker, Mound City, III. 115.224.—COUPLING.—J. R. 4,938.—Drawer.—H. P. Wetmore, Elizabeth, N. J. 4,939.—Clock Front.—J. H. Bellamy, Charlestown, Mass. 4,940.—Refrigerative Bucket.—J. Liming, Phila., Pa. 4,941.—Broiler.—J. T. Page, Rochester, N. Y. #### TRADE MARKS. TRADE MARKS. 266.—Lubricating Oil.—F, M, Backus, Cleveland, Ohio. 267.—I reparation for the Hair.—G. C. Barclay, N. Y. city. 268.—Beer.—B, Bates, Baltimore, Md. 269.—Machinery.—J. Cooper, Mount Vernon, Ohio. 270.—Furnishing Goods.—Fisk, Clark, & Flagg, New York. 271.—Furnishing Goods.—Fisk, Clark, & Flagg, New York. 272.—Leaf Tobacco.—S. Hernsheim, New Orleans, La. 273.—Shirt.—Hutchinson & Thomas, Baltimore, Md. 274.—Tobacco.—W. S. Kimball & Co., Rochester, N. Y. 275.—Whisky and Bitters. A.K. Lewis & Co., Covington, N. Y. 276.—Fruit Jar.—Mason Manufacturing Co., New York city. 277.—Horse Nail.—N, Horse Nail Company, Chicago, Ill. 278.—Cooring Stove.—Perry & Co. Albany, N. Y. 279.—Tobacco.—E. T. Pilkinton, Richmond, Va. 280.—Medicine.—G. Reno, Titusville, Pa. 281.—Paper.—Rock River Paper Company, Beloit, Wis. 282.—Burning Fluid.—B. A. Rose, Urbana, Ohio. 283.—Vinegar and Cider.—Rowe, Graves & Co., Chicago, Ill. 284.—Frying Pan.—S. Smith, New York city. 285.—Fish.—The American Club Fish Co., New York city. 286.—Tea.—Fusiyama Tea Importing Co., Pittsburgh, Pa. 287.—Stove.—Scranton Stove and Manfg Co., Scranton, Pa. 288.—Boots and Shoes.—J. H. Walker, Worcester, Mass. 289.—Leather.—Walker, Oakley & Co., Chicago, Ill. #### EXTENSIONS. MACHINERY FOR COMPRESSING GASEOUS BODIES. - W. A. Boyce, of Newberg, N. Y.-Letters Patent No. 17,704, dated May 28, 1852. CORN HUSKER.—Evelyn F. French, New York city.—Letters Patent No. 17,209, dated May 22,1857. NAIL PLATE FEEDING MACHINE.—J. C. Gould, Oxford, N. J. —Lette's Patent No. 17,273, dated May 12, 1857; reissue No. 2,200, dated July 10, 1860. MODE OF FASTENING SHEET METAL ON ROOFS, ETC.—Asa Johnson, Brooklyn, N. Y.—Letters Patent No. 17,231, dated May 12, 1857. MANUFACTURING SHOE BINDING.—E. L. Norton Charlestown, Mass.—Letters Patent No. 17,445, dated June 2, 1857. PLOW.—J. S. Hall, Pittsburgh, Pa.—Letters Patent No. 17,-450, dated June 2, 1857. #### GREAT VALUE # PATENTS. ### MUNN & CO., ### Scientific American. 37 Park Row, New York, e been engaged in the business of Soliciting Patents for nearly twenty-years, and have the most extensive facilities for transacting such busi-tof any concern in the world. M. & Co. have examined and reported than 50,000 INVENTIONS, And prepared the papers for more than 25.000 APPLICATIONS Patent Office, and are men capable of rendering the best service to the ventor, from the experience practically obtained while examiners in Patent Office. #### MUNN & CO. Offer their services in preparing Specifications and Drawings for Patents, Cavents, Re-lssues, Designs, Trade Marks, Extensions, Interferences, and Assignments. They also prosecute REJECTED APPLICATIONS, Which have been improperly prepared by the inventor or incompetent at torneys. Good inventions are often rejected for no other reason than that the cases were not properly presented to the Potential hey are now obtained in England, France, and in other countries, re erit within the means of most persons to patent their inventions abroad-For instructions concerning FOREIGN PATENTS. REISSUES, INTERFERENCES, HINTS ON SELLING PATENTS, RULES AND PROCEEDINGS AT THE UNITED STATES PATENT OFFICE, THE PATENT LAWS, FEES, ETC., SEE "HINTS TO INVENTORS," Which is sent free by mail on application. Advice free. Everything cod fidential. Address all communications to. MUNN & CO., PUBLISHERS ### SCIENTIFIC AMERICAN. 37 Park Row, New York, Office in Washington corner of F and Seventh wroas, #### Advertisements. The value of the Scientific American as an advertising The value of the SCIENTIFIC AMERICAN as an advertising medium cannot be over-estimated. Its circulation is ten times greater than that of any similar journal nove published. It goes nto all the States and Territories, and is read in all the prine put libraries and reading-rooms of the world. We involve the attention of those who weak to make their business known to the annexed rates. A business man wants something more than to see his advertisement as printed necepaper. He wants circulat on, If it is worth 22 cents per line to advertise in a paper of three thousand circulation, it is worth \$2.50 wer line to divertise in one of thirty thousand. RATES OF ADVERTISING. RATES OF ADVERTISING. Back Page - - - 1.00 a line, Inside Page - - - 75 cents a line, or cach insertion. sgravings may head advertisements at the same rate per line, by measurement, as the letter-press. # **BAIRD'S** #### FOR PRACTICAL MEN THE undersigned begs to announce that his REVISED CATALOGUE of April 15, 1871, 94 pages, Svo., so long in preparation, is now ready for delivery. In it will be found many new and highly important books, and the list, taken as a whole, is confidently submitted to the America public, as the BEST ASSEMBLAGE OF PRACTICAL AND SCIENTIFIC BOOKS EVER OFFERED BY ANY ONE PUBLISHER, IN THIS COUNTRY OF ENGLAND. Many thousand readers of the SCIEN-TIPIC AMERICAN have, in the past, sent for his Catalogue, and large orders have been received for this one. All who have not ordered this edition are, individually and collectively, especially invited to send their addresses, and catalogues shall be promptly sent, FREE OF POSTAGE. #### HENRY CAREY BAIRD, INDUSTRIAL PUBLISHER, 406 Walnut st., Philadelphia, Pa. #### Important to Painters & Sign Writers. NOW READY. The Painter's Guide and Varnisher's Companion. 12mo.....*1.5 The above, or any of my books, sent by mail, free of postage, at publication prices. My new and enlarged Catalogue of Practical and Scientific Books, 94 pages, sent free of postage to any address #### HENRY CAREY BAIRD, INDUSTRIAL PUBLISHER, 406 Walnut street, Philadelphia, Pa. ORWALK IRON WORKS, Sole Proprie tors and Makers of the Norwalk Engine and Earlem Fump, Stationary and Portable Engines, Directing and Balance Wheel Steam Pumps, Air and Vacuumps, Heavy Iron and Brass Castings. eeroom, eor. Center and White streets, New York. LARGE DEALER IN AGRICULTURAL secount and terms. Please address P.O. Box 3443, New York. PATENT RIGHTS and PATENTED ARTI- CLES sold on commission. Agents wanted. See eral first-class leventions for sale. Patents taken of MOODY & CO., 7 Murray st., New York city 1832. SCHENCK'S PATENT. 1871 WOODWORTH PLANERS chinery, Engines, Boilers, etc. JOHN B. SCHE SONS, Matteawan, N. Y., and 118 Liberty st., New #### Independent Steam BOILER SUPPLY. Feed Pump, HOT OR COLD WATER. Circulars sent free. COPE & CO., No. 118 East 2d st., Cincinnati, Obio Universal Wood Worker. FOR Agricultural, Railroad, Car, Carriage, and Wagon Works, Planing Mill, Sash, Door and Blind, Redstead, Cabinet and Furniture Factories. McBETH, BENTEL & MARGEDANT Hamilton, O. #### MACHINISTS. Hinstrateo Catalogue and Price List of all kinds of small Toois and Materials sent free to any address. GOODNOW & W.GHTMAN, 23 Cornhill, Boston, Mass. MASON'S PAT'T FRICTION CLUTCHES A are manufactured by Volney W. Mason & Co. Providence, R. I. Agents, R. BRODKS & CO., 123 Ave. D. New York; TAPLIN, RICE & CO., Akron, Ohio. First Premium, American Institute, 1871. M ICROSCOPES, Magnifying Lenses, etc., M for Botanical, Mineralogical, and Scientific Investigations in general, illustrated Price List free to any address. T.H.McALLISTER, Optician 49 Nassau st. N.Y. TUBULOUS STEAM BOILER BABCOCK & WILCOX, Builders of Steam Engines and Boilers, 4 Courtland st., New York #### Collins' Gold Metal Watches. JUST PUBLISHED. #### The New Elements of Hand-railing REVISED EDITION. CLAXTON, REMSEN & HAFFELFINGER, S19 and S21 Market st., Philadelphia. ew York: ORANGE JUDD & CO., and by Book ellers generally. NE of the most useful and valuable inventions of the age. The Patent Fireproof Mica Lamp Chimney will never break by heat or cold. State rights for the exclusive sale by THE VICTOR SAFETY LAMP CO., 226 Pearl st., New York. PRIZE MEDAL SCROLL SAW .- THOS. L. CORNELL, Derby, Conn. DUTCHER'S Lightning FLY KILLER. DUTCHER'S DEAD SHOT for Bed Bugs. TRY THEM, AND SLEEP
IN PEACE. WANTED.—A responsible dealer in every town in the United States, to sell "The Tanite Co.'s" Emery Wheels and Emery Grinders. Extra inducements from May 1st. Send for terms to "THE TANITE CO." Stroudsburg, Pa. The New Wilson Under-Feed. THE BEST & CHEAPEST FIRST CLASS SHUTTLE SEWING MACHINE IN THE WORLD. Warranted for five years, or and the warranty ind. million of dollars. AGENTS WANTED in unoccupied territory. For particulars address Wilson Sewing Machine Co. and Cleveland, O.; St. Louis, No. 707 BROADWAY, NEW YORK BUERK'S WATCHMAN'S TIME DE TECTOR -Important for all large Corporation and Manufacturing concerns—capable of controllin with the utmost accuracy the motion of a watchman c patrolman, as the same reaches different stations of beat. Send for a Circular. J. E. BUERIK, N. B. -This detector is covered by two U. S. Patents N. B.—This detector is covered by two U. S. Patents. Parties using or selling these instruments without authority from me will be dealt with according to law. #### STEEL CASTINGS TO PATTERN; tensile strength equal to wroughtiron; will rivet over, bend, or case harden. Heavy work at low prices. PHLIP S. JUSTICE. 14 North 5th st., PhIla; 14 CHR st., New York. WANTED.—Gun and Cartridge Machinery of all kinds, new or second-hand. Address WINCHESTER REPEATING AIMS COMPANY, New Haven Conn. \$100 to \$250 per month guaran paid weekly to Agents everywhere, selling our Patent Sil d weekly to Agents everywhere, selling our *Patent Sci* Mold White Wire Clothes Line. Business permanent. Fo particulars address Girard Wille Mills, Phila., Pa OSCAR BARNETT'S MALLEABLE AND GREY IRON FOUNDERIES AND MACHINE WORKS, Newark, N. J. Brass Mollers Flasks a specialty. Faces and Ears Planed off and made interchangeable. #### PATENT BANDSAW MACHINES Ing the table, by FIRST PRYIBIL, 62 to 48, th ave., New York, Price , \$25, \$89, and \$40. At sent (Oct. 16), there are in ration, in this city alone, f our mashle. #### BROOKLYN #### WHITE LEAD CO., Perfectly Pure White Lead, RED LEAD AND LITHARGE. Office 89 Maiden Lane, New York. THE CELEBRATED #### Cold-rolled Shafting. THIS Shafting is in every particular superior to any turned Shafting ever made. It is the mo CONOMICAL SHAPTING to boy, being so very must tronger than turned Shafting. Less diameter answer every purpose, causing a great saving in coupling, puevs and hangers. It is perfectly round, and made it acclusively. We have it in large quantities. Call at examine it, or send for price list. Address GEORGE PLACE & CO., 126 and 128 Chambers st., New York. # N. Y. Machinery Depot. C EORGE PLACE & CO., Manufacturers and Dealers in Wood and Iron Working Machinery, of every description, Stationary and Portable Engines and Rollers, Leather and Rubber, Reliting and all articles #### Sturtevant Blowers. THESE are in every particular the best and most perfect Blower ever made. A full assortment f every size on hand, ready to deliver. Address GEORGE PLACE & CO., 126 and 128 Chamber st., New York. L. & J. W. FEUCHTWANGER, 55 Cedar st., New York, Chemists, Importing and Manufacturing. Silicates of Soda and Potash, Soluble Glass in all forms, Steel and Glass Makers¹, Potters¹ and Enamelers² Materials, Pure Metallic Oxides and Metals, Hydrofluoric Acid. All articles of the best quality, and orders promptly attended to. Publishers of Treatises on "Soluble Glass," "Gems," and "Fermented Liquors." BURDON IRON WORKS,—Manufacturers of Pumping Engines for Water Works, High & Low Pressure Engines, Fortable Engines and Bollers, of all kinds, Sugar Mills, Screw, Lever, Drop, & Hydraulic Presses, Machinery in general. HUBBARD & WHITTA-KER, 10 Front st., Brooklyn. MACHINERY, NEW and 2d-HAND... Send for Circular, Chas. PLACE & CO., ® Vesey st., New York #### P. BLAISDELL & CO., MANUFACTURERS of the "BLAISDELL" TO RILL PRESSES, with quick return mo tion, Agricultural Drills, Improved Engine Lathes, fron 12 in. to 28 in. swing, Planers, Gear Cutters, Boring Mills Hand Lathes, and other first-class Machinists' Tools. Jackson st., Worcester, Mass. Agents! Read This! WE WILL PAY AGENTS A SALARY OF \$30 per week and expenses, or allow a large commission, to sell our new and wonderful inventions. Address M. WAGNER & CO., Marshall, Mich. WOOD-WORKING MACHINERY GEN-orally. Specialties, Woodworth Planers and Richardson # Patent Improved Tenon Machines. Not. 24 and & Central, corner Union st., Worcester, Mass. WITHERBY RUGG, & RICHARDSON. EGAR, how made in 10 hours, without drugs. Particulars 10 ets. F.Sage, Cromwell, Conn. Tanite Emery Wheels A ND GRINDING MACHINES. S. A. WOODS, General Agent. Machinery Depot, 91 Liberty st., New York. RAILROAD MEN find all the latest railroad At news, descriptions and little threat railroid in provements, also articles on railroad management anugineering, by practical railroad men, in the Rallmost Azerre, '2 Broadway, New York, and 112 Madison st. hicago. Four dollars a year; ten copies for \$50, \$20 et with Engineering, the great English lourial, for one year, \$13. A MONTH! EMPLOYMENT EXTRA INDUCEMENTS! A premium House and Wagos for Agents. We dealer to employ agents for a term of seven years, to sell the Buckeye \$20.00 Shuttle Sewing Machine. It makes a stitch alike on both sides, and is the best low-priced licensed machine in the world. W. A. HENDERSON & CO., Cleveland, Ohlo, or St. Louis, Mo. S ILICATE OF SODA, IN ITS VARIOUS forms, manufactured as a specialty, by Philadelphia Quartz Co., 783 South 2d st. Philadelphia Pa. CINCINNATI BRASS WORKS. — Engineers and Steam Fitters' Brass Work, Best Quality at very Low Prices. F. LUNKENHEIMER, Prop'r. A LLCOTT'S LATHES, for Broom, Hoe, and Rake Handles, 10r sale by L. W. POND, S Liberty st. New York. \$75 TO \$250 PER MONTH, everybe of the interest of the control makes the "Elastic Lock Stitch." Every secon sitte can be cut, and still the cloth cannot be pulle apart without tearing it. We pay Agents from # to \$250 per month and expenses, or a commissio from which that amount can be made. Address SECOMI & CO.. Boston, Mass. Pittsburgh, Pa.; St. Louis, Mo., Chicago, Ill. HOWARD'S IMPROVED ADJUSTABLE MITER MACHINES. Agents wanted, Wholesale Picture Frame and Woodworking Machinery dealers please apply. HOWARD MANUFACTURING Co., leilnat, Maine. A GENTS WANTED IN EVERY CITY AND TOWN IN THE UNITED STATES. Send for particulars to LABAN, HEATH & CO., 20 Hanover st., Boston, Mass. M ACHINISTS' TOOLS, at greatly reduced prices. Also, some Woodworth Planers and Second hand Tools. 97 to 118 R. R. svc., Newark, N. E. & R. J. GOULD, successors to Good Macone Co. #### To Electro-Platers. IMPORTANT O MACHINISTS.—The Best Metal for all Machine Uses is the MARTIN STEEL, made by HE NEW JERSEY STEEL AND IRON CO., Trenton, N. J. his steel is made by an entirely different process from #### Machinery. NO. 348 BROADWAY, NEW YORK. & CO. MPS -For Description, Price WOODBURY'S PATENT Planing and Matching RICHARDSON, MERIAM & CO., #### Reynolds' Gearing, Shafting, # Niagara Steam Pump. CHAS. B. HARDICK, Adams st., Brooklyn, N. Y. MODELS, PATTERNS, EXPERIMENTAL Andrew's Patents. Attureus & Futurus. Nolaciesa, Friction Grooved, Portable, and Warchouse Holsters. Friction or Geared Mining & Quarry Holsters. Smoke-burning Safety Bollers. 0-ciliating Engines. Double and Single, 1-2 100-Horse power. Centrifugal Pumps, 100 to 100,000 Galions per Minute, Best rumps in the World, pass Mud. Sand, Gravel, Coal, Grain, etc., without injury. All Light, Simple, Durable, and Economical. Send for Circulars. WM. D. ANDREWS & BRO. 11 Water street, New York. sbric. Sold by Druggists and Fancy Goods Dealers. BAGRANT SAPOLIENE CO., 33 Barclay street, New ork; 46 La Salle street, Chicago. ORTABLE STEAM ENGINES, COMBIN irculars sent on application. Address J. C. HOADLEY & CO., Lawrence, Mass. 46. Cortlandt st., New York. THE WOODWARD STEAM-PUMP MAN AMERICAN GRAPHITE CO.,. 24 CLIFF ST., NEW YORK. MINIS AND WORKS, TICONDEROGA. PLUMBAGO BOOK Grades for Special Uses prepared to order. TNRIVALLED Hand Saw Mill, Self-feed ling, with ease. Kip %-in. lumber; guaranteed do work of 5 men. The only hand saw machine known, does as represented. Thousands in use. Send for circular, WM. H. HOAG, Sole Manufacturer, 214 Pearl st. N. Y. CHINGLE AND HEADING MACHINE— Law's Patent with Trever & Co.'s Improvements. The Simplest and liest in use. Also, Shingle, Heading and Stave Jointers, Equalizers, Heading Turners, Planers etc. Address TREVOR & CO., Lockport, N. Y. TATHE CHUCKS—HORTON'S PATENT from 4 to 36 Inches. Also for car wheels. Address E. HORTON & SON. Windsor Locks Conn. WATCH free and \$30 a day sure, no humburg, Address, with stamp, Latta & Co., Pittsburgh, Fa. #### Advertisements. Advertisements will be admitted on this page at the rate of \$1.00 per line for each insertion. Engravings may head advertisements at the same rate per line, by measurement, as the letter-press. # THE BAND SAW! Its ORIGIN and HISTORY, with Engravings of the OLDEST MACHINE, sent gratis. Address RICHARDS, KELLEY & CO., 22d st. (above Arch), Palladelphia. POR SALE, by the Patentees, an interest in a Gang Laitle for woodturning, balasiers, bed posts, table legs, etc. A machine will do the work of swanty turners, and make your hundred naturaters in an norn. Two Machines now running. An interest, or rights for individual States, will be sold. Address W. F. W., P. O. Box 183, New York city. PODD & RAFFERTY, Manufacturers of ### FREEMAN & BURR, GLOTHING. 138 & 140 Fulton St., New York. CLOTHING, inviting an inspection of their immense Stock for the present season. It embraces the choicest products of the boom from every part of the world, both in the piece and made up for immediate were, for all ages and all accessions. SPRING OVERCOATS, \$5-\$10. SUITS, \$10-\$15. BOYS' SUITS, \$5-\$8. PRING OVERCOATS, \$15-\$20. SUITS, \$20-\$30. BOYS' SUITS, \$10-\$12. POYS' SUITS, \$10-\$12. DRILLS DIAMOND POINTED JUST ISSUED FOR 1871-2. WILSON'S NEW YORK BUSINESS DIRECTORY, N.Y. City Directory \$5,
and Co-Partnership Directory \$2. To Orders by mail promptly attended to. To Sample pages of the Business Directory will be sent to any address on receipt of stamp. Beware of intringements. SEVERANCE & HOLT, Proprietors and Manufacturers, Omee 16 Wall st. New York. the United States on receipt of fice JOHN F. TROW, PUBLISHER, 52 GREENE ST., NEW YORK. ORDERS BY LETTER promptly filled. FREEMAN & BURR'S Easy and Accurate System for SELF-MEASURE enables parties in any part of the country to order Clothing direct from them, with the certainty of receiving the most PERFECT FIT attainable. ORDERS BY LETTER promptly filled. FREEMAN & BURE'S Easy and Accurate System for SELF-MEASURE enables parties in any part of the country to order Clothing direct from them, with the certainty of receiving the most PERFECT FIT attainable. RULES FOR SELF-MEASURE, Samples of Goods, Price GLOTHING. RULES, And Fashion Sheet, SENT FEEE on application. WANTED.—A good workman at sash doors and monidings can have a permanent job with ARLINGTON MANUFACTURING CO., Arlington, Vt. #### VHNIHHRS FANCY WOODS & BOARDS FRENCH Ve VEERS, HUNGAUATAN ASIA, F.C., to which they it is the particular attention of the trade. Send for catalogue and price list. For SALE, one of the best and largest VENEER CUTTING MACHINES in the country. 170 and 172 Centre st. Factory, 184 to 300 Lewis st. ### L. L. SMITH & CO., Nickel Platers. 6 HOWARD ST., New York, Between Elm and Centre. ### PATENT LD ROLLED #### WIRE ROPE. JOHN A. ROEBLING'S SONS, MANUFACTURERS, THENTON, N. J. OR Inclined Planes, Standing Ship Rigging RADE MARK Union Stone Co., ARTIFICIAL STONE & EMERY WHEELS, THE Allen Engine Works. Porter's Governor, The Allen Boiler, and Standard Straight Edges, Surface Plates, and Angle Plates. L. W. Pond --- New Tools. Porticle Drills, Boring Barz, Machinisto', Boller Makers, and Smiths' Hand Tools (both from and cast steel), Shafting, Pulleys, Hangers, and 6 Fairbacks' Platform Scales. Bend for catalogue, or apply at the South Brooklyn. Steam Kogine Works, cor. Imlay and Summit sts., Brooklyn. A DAY FOR ALL with Stencil Tools. A DAY FOR ALL with Stencil Tools. Address A. E. GRAHAM, Springfield, Vt. A C. STEBBINS New York Agent. ### Harrison Safety Has been in practical use for than ten years. 25,000 HORSE POWER IN USE. Weston's Patent Differential #### PULLEY BLOCKS. HARRISON BOILER WORKS Philadelphia, or JOHN A. COLEMAN, Agent, 110 Broadway, New York, or 189 Federal St., Boston, Mass. An Important Fact. SPHERICAL SAFES Have never been Robbed. American Saw Co., Manufacturers of ### UILDING PAPER OF THREE GRADES. TARRED SHEATHING, PREPARED PLASTERING BOARD DOUBLE THICK ROOFING and Quartz Cement, make a good water an are-proof roof, for less than \$3.50 per square Sample and Circulars sent free, by ROCK RIVER PAPER CO., Chicago; B. E. HALE, 22 & 24 Frankfort street, N. Y. #### United Nickel Co., EXCLUSIVE OWNERS of Dr. Isaac Acremoved their hustness of Dr. Isaac Acremoved their hustness owns. #### RUMPFF & LUTZ. MPORTERS and Manufacturers of Aniline Working Models And Experimental Machinary, Metal, or Wood, made to order, by J. F. WERNER 82 Center st. N.Y. THE # Tanite Emery Wheel. Does not Glaze, Gum, Heat, or Smell. Address THE TANITE CO., Pa. Strondsburg, Monroe Co., Pa. A. S. & J. GEAR & CO., Boston, furnish a cvery description of Wood and Iron Working dachinery and Supplies. The best in use, regardless of taker, at lowest possible rates. DEST DAMPER REGULATOR for Steam Boiler. Send for Circulars. anted. MURRILL & KEIZER, Baltimore, Md. HEAVY CASTINGS For Forge and Mill Work. The Steam Engine Builders & Founders, New Haven, Conn. NEW AND SECONDHAND IRON PLAN ERS, LATHES, DRILLS, etc., for sale low. Sene or Circular. W. A. JAMES & CO., 195 Lake st., Chicago. BUILDERS and all who contemplate building, supplied with full description of "Village Builder" free. Address A.J. BICK-NELL & CO., Publishers, 27 Warren st., New York. RAILROAD MEN, who hope for promotion, read the RAILROAD GAZETTE, published at 72 Broadway, New York, and 112 Madison st., Chicago. Sample numbers 10 cts. PERM OIL, strictly pure, for SEWING MACHINES and fine Machinery, in bottles, cans, barcls, and casks. W. F. NYE New Bedford, Mass. RON PLANERS, ENGINE LATHES, Drills, and other Machinists Tools, of superior qual-g, on hand, and finishing. For sale low. For Descrip-on and Price address NEW HAVEN MANUFACTUR-SG CO New Haven Coun. PAT. SOLID EMERY WHEELS AND OIL STONES, for Brass and Iron Work, Saw Mills, and Edge Tools. Northamoton Emery Wheel Co. Leeds, Mass. WATER-PROOF BUILDING PAPER No Tan), for Boofing, Sheathing, Ceilings, Oll-cloths thoe Stiffenings, Tage, Trunks, Cartridges, Hassing ass-book Covers, Grain and Flour Bins, etc., for sale by J. HUTFER, Js. Paper Warehouse, 29 Duane st. New York. EW T. V. Carpenter, Advertising Agent. Address hereafter, Box 773, New York city. ### Swain Turbine. ### "Our Low-Water Wheel from this on" WILL DO TEN PER CENT MORE WORK on small streams, in a dry season, than any wheel the Lowell Tests. For Report of tests at Lowell, with Diagrams and Ta-oles of Power, address THE SWAIN TURBINE CO., North Chelmsford, Mass. ## Newspaper Advertising. ceipt of 25c. GEO. P. ROWELL & CO., Publishers, No. 49 Park Row, New York The Pittaburgh (Pa.) Leader, in its issue of May 29, 13 \$2.50 A LINE for an advertisement in Kellogg's Inside Track List of 265 Western Country Newspapers. Best and cheapest medium of fits kind in the world. Address A. N. KellLüßg. 110 and 112 Madison st., Chicago. Patent Vertical Portable Engine and correct when sawing. Stationary Logarette, Ohio WANTED.—A responsible dealer in every HOTCHKISS BRICK AND TILE MA-CHINE.—Send for Circular to Room 7, No. 19 Clift Street, New York. HARTFORD Steam Boiler #### INSPECTION & INSURANCE CO. CAPITAL \$500,000 ISSUES POLICIES OF INSURANCE, after a careful aspection of the Boilers, covering all loss or damage to Boilers, Buildings, and Machinery, ### - ARISING FROM- STEAM BOILER EXPLOSIONS. The business of the Company includes all kinds o. STEAM BOILERS, STATIONARY, MARINE, AND LOCOMOTIVE. HOME OFFICE, in Hartford. Conn., or at any Agency. J. M. ALLEN, President. C. M. BEACH, Vice Pres. T. H. BABCOCK, Secretary. BOARD OF DIRECTORS: J. M. Allen. BOARD OF DIRECTORS: Lucius J. Hendee. President Etna Fire Ins. Co. F. W. Cheney . Ass't Treas. Cheney Bros. Sik Mg. Co. Charles M. Beach. Pres. Com. River Banking Co. Charles M. Beach. of Beach & Co. Charles M. Beach. of Beach & Co. G. M. Barthofomew. Fres't American Nal'l Bank. R. W. H. Jarvis. Pres't Colt's Fire-Arns Mg. Co. E. M. Reed. Sup't Hartford & N. Hayen Railroad. Hon. Chas. M. Pond. Tre. State of Connecticat. T. O. Enders. See. Etna Life Ins. Co. GEN. WM. B. FRANKLIN, Vice Pres't Colt's Pat. FireArms Man'f'g Co. Austin Dunham. Of Case, Lockwood & Co. Geo. Crompton. Crompton Leon Works, Worcester, Karl J. Mason. Fres't Prov. & Wor. E. R. Providence. Wm. Adamson. of Bacder, Adamson & Co., Philadelpia. New York Office. 239 Broadway. THE "Scientific American" is printed with CHAS. ENEU JOHNSON & CO.'S INK. Tenth and Lombard sts. Philadelphia and 59 Gold st. New York. # REYNOLDS & CO. Screws & Bolts Bridge and Roof Bolts. STEEL & IRON SET SCREWS specialty. Also, Small Article translates, in great numbers, a No. 145 East st., New Haven, Cont Roper Caloric Engine Co. Removed to 124 Chambers st. Send for circular NOW READY. ### The Young Mechanic. By the author of "The Lathe and Its Uses." NONTAINING directions for the use of all J kinds of Tools, and for the construction of Steam gines and Mechanical Models, including the art of orning in Wood and Metal. Fac simile of the London lition, with American revisions. Fully illustrated, uare 8vo., cloth, \$1.75. For sale by all booksellers, or sent postpaid, on receipt price, by G. P. PUTNAM & SONS, 4th ave. and 23d st., New York. Wood Working Machinery. A LL kinds of Machinery used by Cabine makers. Also, best Gauge Lathe, made for nullings well as all kinds of handles. Address, for catalogues well as all kinds of handles. Address, for catalogues well as all kinds of handles. Address, for catalogues well as all kinds of handles. \$250 A MONTH easily made with Stenci Samples, FREE. S. M. SPENCER, Brattleboro, Vt. \$375 A MONTH-Horse and outfit fur PRITANNIA IRON WORKS, Bedford, Eng M ACHINISTS', BOILER MAKERS', AND JONES & LAUGHLINS, 120 Water street, Pittaburgh, Pa. 120 Water street, Pittaburgh, Pa. ULLER, DANA & FITZ, Boston, Mass. GEO. PLACE & CO., 126 Chambers street, N. Y. BOSTON, MASS. EXTRA HEAVY AND IMPROVED PATTERNS.