A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. Vol. XXVII.--No. 24. NEW YORK, DECEMBER 14, 1872. # TWENTY INCH SMOOTH BORE GUN FOR THE RUSSIAN GOVERNMENT. The weight of this weapon in a finished state is 4422 tuns. The weight of the projectile to be employed-a cast iron spherical one-is 900 lbs. In trying the gun, in all 318 rounds were fired, the normal charge of prismatic gunpowder being about 117 lbs. The experiments of firing were conducted on the river Rama, the high bank across the stream serving as a butt, which was at a distance of about 1,400 yards from the the gun. The weapon was placed under an iron plated covering of a peculiar construction. On the discharge of the piece the concussion of the air was so great that in the village of Matoriloro, situated at a distance of one third of a mile, the chimney stacks fell in when the wind was blowing in that direction. The sound itself, although loud, was not deafening, and persons standing even under the iron-plated covering were able to support both the noise and concussion of the air. The iron gun carriage weighs 614 tuns. The breech of the gun is elevated and depressed by means of a screw ratchet key. For facilitating the running forward of the gun a system of cogwheels is introduced, and for the diminution of the recoil, and the hoisting of the charge and projectiles, special appliances are provided. The moving of this enormous mass of iron can be effected easily by three men. After the introduction into the military art of rifled cannon, the conviction became established of their unconditional superiority over the smooth bores. As regards guns of small caliber this opinion may very likely be correct; but with respect to naval guns of the largest calibers, it would be difficult to give the preference either to the one or the other system. Without going into particulars of the merits or demerits of the one or the other description of weapon, we will point to one important difference in the effect of the spherical projectiles of the smooth bores and the oblong ones of the rifled guns; the latter will hit an iron-plated target at a greater distance than the former, and, so to say, pierce it liform system of tests for boiler plates is suggested, and the through; on the other hand, the former will produce a far and cracking them. Besides the difference in the destructive action of these weapons, there is an enormous difference in the cost of production. Thus, for instance, according to a statement of Mr. Grasshof, the price of a 20 inch smooth bore gun will cost, when produced in quantities, about \$8,000, where as an 11 inch steel rifled piece corresponding to the same could not be produced under \$30,000. #### MARINE CASUALTIES. The report of Supervising Inspector General Nimmo, recently made public, furnishes the following interesting details relative to late casualties in river and ocean steamers Full statistics are given for the year 1871, from which we find that sixty-five disasters by fire, explosion and wreck took place during that period, involving a loss of \$3,600,661 and 363 lives. The average number of casualties above given is thirty-one per cent less than the average for the preceding three years; the average loss of property is nineteen per cent and of life four per cent less. Various modifications are suggested to the present laws, and more specific provisions are asked for regarding methods of investigation. The different catastrophes which have happened during the past year are recapitulated. The first case is that of the steamer Oceanus, which exploded on the Missouri river, killing forty-one persons. Then follows the Bristol casualty in Newport harbor; the burning of the Bienville and loss of forty-one lives; the sinking of the Metis, twenty-three lives lost; the bursting of the flue on the Dean Richmond, the fault in this case being ascribed to the failure of the manager of the line to have the boiler inspected after the steamer had been laid up for several months; lastly, the burning of the Missouri and the sacrifice of eighty persons closes the list. Strict discipline and repeated drilling of the officers and crews of sea-going vessels is earnestly recommended. A unprincipal manufacturers have been called upon to present greater amount of concussion, shaking loose the rivets of the plans of testing machines. A series of general experiments entific papers in the world. plates and bolts of the target, and bounding on the plates upon safety valves is also recommended, which shall be of the most exhaustive character. Further tests of steam boilers, similar to those made at Sandy Hook, are called for, and especially upon boilers of the various forms used on vessels of the seaboard, of the lakes, and of the Western rivers. It is suggested that passenger steamers be allowed to carry petroleum which, in the opinion of experts, shall be perfectly safe, and amendments to the law are recommended which will authorize the immediate seizure of explosive or dangerous articles shipped contrary to the law. The steamboat inspectors' service consists of a supervising inspector general, 10 supervising inspectors, 36 inspectors of hulls, 36 inspectors of boilers, 3 assistant inspectors of hulls, 3 assistant inspectors of boilers and 8 clerks of inspectors The report concludes with the expression of the hope that in the future there may be a free and friendly interchange of views between this service and all the interests of the country affected by our laws for the preservation of life and property on steam vessels, and that such intercourse may result in the best attainable security for human life and the highest degree of prosperity for our commercial interests. A PLANET BETWEEN MERCURY AND THE SUN.-Mr. J. R. Hind, the astronomer, shows that there is a high probability that a planet circulates between Mercury and the sun, having a period of revolution of about nineteen days. Mr. Hind suggests that, on March 24 next, the sun's disk should be watched, as a conjunction of this hypothetical planet with the sun will occur about 10 A. M. on that day. A correspondent writes us that, while visiting the Li brary of the British Patent Office, in London, be noticed that the SCIENTIFIC AMERICAN attracted a larger number of read ers than any other scientific publication there taken. This is an interesting fact, and holds good wherever our paper is taken. The regular weekly edition of the SCIENTIFIC AMER-ICAN is nearly equal to the combined number of all other sei- TWENTY INCH SMOOTH BORE GUN FOR THE RUSSIAN GOVERNMENT # Scientific American. MUNN & CO., Editors and Proprietors. PUBLISHED WEEKLY AT TERMS. One copy, one year One copy, six months 83 00 CLUB RATES | Ten copies, one year, each \$2.50 | Over ten copies, same rate, each TO BE HAD AT ALL THE NEWS DEPOTS. VOL. XXVII., No. 24. [New Series.] Twenty-eighth Year. NEW YORK, SATURDAY, DECEMBER 14, 1872. marked with an asterisk Illustrated articles are nd personal. pers, preserving. , the California. how to make money by.. official list of official publication of the educator. ofessor Morton on igation. or Horace Russian Govern ecent American and #### THE PROPOSED HALF MILLION GRAB. As Congress has now assembled, and in view of the extraordinary influence which will be brought to bear upon that body to obtain a large appropriation in order to cover the expenses of American Commissioners and exhibitors to the Vienna Exposition, we deem it advisable to present a recapitulation of the various objections which we have urged against such proceeding, and also a brief review of the facts to be ashamed to ask it. Such refusal will not militate regarding the Austrian patent laws and similar enactments against a fair display of American products, as the same are that a body of workers might be sent to the grounds and subof other European countries, the condition of which forms the basis of our opposition. The reader will therefore find tributed by foreign exhibitors. in the following a succinct resumé of the various arguments which we have from time to time advanced, and from which, on connection with the published and opposite views of the United States Commissioner, General Van Buren, an intelligent idea of the controversy may be obtained. According to the rulings of the Austrian patent law, patents in that country must be worked within one year of their date of issue; working before application for a patent, or between the dates of application and issue, is not a compliance with the law. Not only the device but all its parts must be made in Austria and sworn to be in exact conformity with the drawings and specifications filed. There is no provision and they will labor no longer at his or their private expense, rubies on the surface of the ground and in the crevices of whereby a suit may be terminated. The infringer, after the case is completed and he finds himself bea en, has only to assert that the inventor has not properly proved his working. The suit is then re-opened, and the same ground gone over, and this can be done as often as the infringer chooses, during the whole life of the patent. If an inventor allows two years to pass after working his patent the first year, without manufacturing it again, his letters become void. As regards the practical working of the above regulations, we have presented sundry communications from American inventors in Austria tending to show that Americans have never succeeded in getting a favorable decision in that country, and detailing individual experience, proving that so far from the government supporting the injured party, it actually seeks means to aid the infringer in his piracy. Not only are the Austrian laws thus oppressive, but the regulations of adjacent European countries are equally unjust. We note in English journals repeated complaints of the unlawful seizure of patented articles displayed in the where their best
interests do or do not lie. Our business Paris Exposition of 1867, and we find it stated that inventions supposed to be protected by a special certificate, in that their own affairs without any assistance from General Van Exhibition, have been patented by Continental people. That Buren or his staff. the facts of the case are fully appreciated in England is proved both by the warnings of the press and the appropria- strongly urge upon Congress the denial of all applications has brought to the discharge of his onerous duties, and no tion by Parliament of but £6,000 (\$30,000) to assist English for this appropriation. If a considerable sum is necessary, more satisfactory proof of the rapid improvements which The practice under Austrian practice is little better-is strongly condemned in evidence given by Mr. Henry Bessemer, the great English steel manufacturer, before a Parliamentary committee. He states that, after disposing of the use of his process to Krupp, the German founder, the latter, according to law, applied to the Prussian Patent Office for a patent on the same. The authorities first declared the invention to be not new, then temporized for a long period and finally denied the application on the ground that a description of the process was published in the English Blue Book, which volume circulated in Prussia. Mr. Bessemer adds "that is universally the way in Prussia, unless it is some paltry thing, merely to keep up the appearance of granting patents, they give an occasional patent in that way, but they receive always the drawings, the fees and the description from the English patentee, which is published there for the benefit of the Prussians. Having obtained all the information from an English patentce, they make it public in their country, and then say it is not new." Other cases are on record where patents on invended to hold, 30 feet 6 inches. She is a four decker of covers too late that he might have saved all his toll and ex- has quietly proceeded to manufacture the articles. Especial- of 4,500 tuns. Her model is handsome, and combines speed ly is this true of military goods. operation of the above clause such inventions as may be exhibited at the Exposition, and to grant a certificate to that effect in such cases as he chooses. measure, this certificate is worthless. There is, therefore, plainly no ground for the assertions of the United States a varying pitch of 22 to 26 feet. Commissioner that it is a patent or in any way operates as such. The most that it does is to fix a time during which an hibited by certain prominent shipping merchants, in request invention may be exhibited in Austria before being patented, and it then leaves the inventor to the tender mercies of the port whether the compound marine engines, now so extenold and unaltered law. We therefore strongly deprecate any sively used, were really meritorious; as if the success and appropriation of the public funds in support of this great show business until Austria modifies its laws and consents to the finest foreign vessels trading to this port, had not setgrant to our inventors the same enjoyment of their inventions in Austria as the subjects of that empire enjoy in the United States. In this country the Austrian inventor may obtain a patent even if his invention has been exhibited and manufactured for two years prior to his application for a patent; and our courts will defend and protect him from infringement, the same as if he were one of our own citizens. From the consideration of this branch of the subject, we desire to direct attention to subordinate though cogent reasons why legislative assistance should be denied. We consider that an inventor or manufacturer in sending his goods for exhibition to Vienna does so in accordance with the views expressed by President Barnard in a late oration: that it will be a grand advertisement and ensure him a mag reaction en it is manifestly unjust to devote the national money to the ends of private gain. For the relief of needy inventors having meritorious products to exhibit and being without funds to forward their desires, just exception might be made and discriminating enactments, private or otherwise, passed. But to manufacturers of our own products and of long known and tried devices, who incur no danger of infringement, pecuniary assistance should be denied, and they ought largely manufactured abroad and will in any event be con- We have yet to refer to the especial labor of the United States Commissioner. This gentleman some time since voluntarily accepted the office, well knowing, as he himself states, the duties pertaining thereto, and that it was merely honorary, no salary being attached. After working "zealously" alone for several months, he has suddenly, under what authority we know not, appointed an advisory committee of thirty, who in turn appoint a series of assistants, making the total number of officials one hundred and fortythree. Forgetting his voluntary acceptance and also that of his subordinates, the Commissioner now concludes that he diamond regions, and found, surely enough, diamonds and and consequently devotes his entire energies in securing, or, to use a common phrase, the lobbying through Congress, an | it was evident that the gems had been deposited there by the appropriation of fiee hundred thousand dollars from which hand of man, and that none existed where, if their occurhe and his deputies are to be compensated. To say that the personal ends of these gentry do not underlie their patriotic endeavors would be absurdity; the fact clusion that the ground in certain places had been salted, or is evident, and indeed is admitted by some, though, at the same time, defended by specious arguments of scientific re- honest or unskilled searchers, and they denounced the whole ports, etc. It is well known that living expenses in Vienna thing as a swindle of the most barefaced description are extremely high, and therefore half a million dollars would barely cover a year's expenditure for the number of the trustees of the corporation met and adopted a resolution officials above mentioned, leaving either a very small sum or to the effect that the fraud be at once and fully exposed, in nothing for the benefit of the exhibitors. We hold that this order that the public might be protected; also that no more body of office holders are totally unnecessary, and that for stock be issued or transferred, and that the corporation be Congress to lavish public money upon them would be both dissolved as soon as practicable. unjust and impolitic. We have ample diplomatic representation in Austria, with paid employees to look after our interests. We need no one at home to point out to our citizens men are sufficiently shrewd and amply capable of managing their own affairs without any assistance from General Van OFFICIAL PUBLICATION OF THE AMERICAN PATENTS-- In conclusion, and on the grounds above related, we interested in the Exposition, subscribe to the extent of their we think, be asked than that afforded by the recently pubabilities, and thus further their own profit with their own lished volume which forms the first of a series hereafter to funds. The country cannot and should not lavish half a be issued by the Patent Office, entitled "Specifications and million dollars, which might be far more advantageously Drawings of Patents." It consists of a large quarto of 668 applied to the reduction of our national debt, to the support of our own Exposition., the Centennial of 1876, and to hundreds of other purposes, than to any enterprise to which there are such strong objections, and which, at the best, bids fair to be of so little national benefit as the Vienna Expo- that the record of devices patented, instead of being obtain- #### REVIVAL OF AMERICAN SHIPBUILDING. Steamship Company, have lately been launched at Wilming-ventor, can hardly be over estimated. An immense amount ton, Del. They are the Colon and the Acapulco, both of of time is constantly wasted by people seeking to develop same size. Three others, for the same company, are also be- what to them are new ideas, which are in the end perfected ing built at Chester, Pa. The following are the general di- only to be rejected, after official examination, as old and tions have been refused, and after the denial the government 2,324 tuns measurement, with a carrying capacity of upward pense, had he posted himself in what others had done before stability, and large stowage capacity. She is to be brig Under the existing patent law of Austria, a valid patent rigged, like the other vessels of the line. Her interior will cannot be had if the invention is exhibited in Austria prior be supplied with all modern improvements. The machinery to the application for a patent. By a recent modification, the is first class, of the compound type, with cylinders 51 and 88 Director of the Exposition is empowered to except from the inches in diameter, and with 42 inches of stroke; she has four boilers, 9 feet 9 inches in length and 13 feet in diameter, connected to one smoke stack; each boiler is made of 13-16 inch boiler iron, double riveted, and capable of carrying a work-It is hardly necessary to say that, as a protective patent ing pressure of 70 pounds of steam. The line shafting is 131 inches in diameter, the propeller being 16 feet 3 inches, with We alluded the other day to the remarkable stupidity exing the American Institute, of this city, to examine and re economy of this form of machinery, now employed on all tled the question. Among the signers was the Vice President of the Pacific Mail Steamship Company. The engineers of that corporation seem to understand the subject, whether the Vice President does or not, for they are putting in the compound engines; and their new fleet of steamers will doubtless be enabled to make the same speed on half the coal burned in their present vessels, besides carrying more cargo. It would not be a bad idea
for shipping merchants, who pay for the building of steamers, to become readers of the SCIEN-TIFIC AMERICAN, and thus keep themselves posted in the mechanical and scientific progress of the day. #### THE CALIFORNIA DIAMOND BUBBLE. For several weeks past-the papers have been filled with accounts of the discovery of diamonds, rubies, sapphires, and other precious stones, in Arizona and other parts of the Western wildernesses. The wonderful region, where the gems were to be found almost as thick as blackberries, was alleged to be quite circumscribed, and very inaccessible. The fortunate discoverers brought to San Francisco a large number of specimens, which excited the astonishment and interest of everybody. It was then announced that they had arranged, by purchase and preëmption, to secure the whole of the valuable area, which embraced these untold treasures. The aim of the proprietors, as they now allege, was to make arrangements for the supply of a large amount of funds, so sisted for a length of time sufficient to collect all the jewels that were accessible. To effect this, they determined to form a joint stock company. A corporation, styled the San Francisco and New York Commercial and Mining Company, was accordingly organized, a large amount of the stock sold, and the money transferred to the pockets of the original projectors. The purchasers of the stock, in order to ascertain the approximate value of their astonishing possessions, decided to institute a careful survey of the diamond regions and, for this purpose, a scientific party, headed by the well known geologists, Clarence King, D. D. Colton, Mr. Bost, and Mr. Frey. These gentlemen, after a toilsome march, reached the alleged the rocks. But, strange to say, in every instance of a "find," rence had been genuine, the inevitable laws of Nature would have placed them. The explorers were forced to the conscattered over with the gems for the purpose of deceiving When the report of the surveyors reached San Francisco, Thus ends the romance of the Arizona diamonds. It is to be hoped that the originators of this daring outrage upon innocent purchasers of the stock may be brought to justice. No better evidence of the energy and ability which the present Commissioner of Patents, General M. D. Leggett, pages of letter press and 226 pages of plates, containing not the mere claims, but the entire specifications and reduced fac similes of the drawings of all patents issued for nearly one month. It is intended to publish this work monthly, so able only in the Patent Office, will be broadly disseminated throughout the country and made generally accessible. The importance of this undertaking, both as an encour-Two new and splendid steamships, for the Pacific Mail agement to the useful arts and as a valuable aid to the in- him. With the aid of the present work, which-for a small yearly sum, no more than sufficient to cover the actual cost may be added to every one's library, the most accurate information may be obtained, not only regarding the latest improvements and discoveries, but also all that has hitherto been accomplished in any special branch of industry or That this aerial billow has been hitherto believed to exist only useful arts ever published. thousand patents, while the aggregate of the latter, published weather table—a vast and considerably well defined disturb in the twelve volumes, will reach nearly fourteen thousand ance, peculiar, it would seem, to this portion of the globe. per annum. If we compare the above large total with that The views of the distinguished astronomer are, however, corresponding in other countries, we find that the sum of all now clearly shown to be erroneous. On November 12 last, the patents granted in the United States in a single year exceeds the entire number issued by many nations during the past century or since the establishment of their patent offices. This fact alone shows that the work will be of still wider value as furnishing, not only to Americans but to the world, and Nevada, and at midnight was pouring through the a complete record of themajority of all the useful inventions passes of the Rocky Mountains. On Thursday, the 14th, it of novel ideas yearly devised by its inhabitants and placed under the protection of, its patent laws. The statistics of this nation show that 3,000 patents are annually granted, but little over one fifth of the average taken out in the United stretched thence to the Lower Mississip-States. The English specifications and drawings have, however, been regularly published for a considerable period back, so that we are enabled to draw the contrast between the ately predicted, as it advances from the Pacific coast east-British and American modes of transmitting this valuable information to the public. The specifications of the English patents are issued in volumes measuring 74x10x24 inches, each weighing some 44 pounds. Each year's publication occupies about fifty books of specifications alone, the drawings being bound separate-ly in fifty additional volumes—16x22x3 inches in dimensions, and weighing about fifteen pounds each. The aggregate dead weight of a year's issue reaches 975 pounds or nearly half a tun of printed matter, all of which, it seems, is required for the description of 3,000 patents in a manner not a whit clearer or fuller than our compact yet elaborate volumes. On the above English plan of publication, it would require about five hundred volumes a year, weighing in the aggregate over two hundred tuns, to produce the same number of patents as are yearly issued by this country, and which Commissioner Leggett expects to print in thirteen comparatively small volumes. As to the comparative expense of the two systems, no comment is necessary. As a matter of course the English publications might as well rediction of the Signal Bureau was verified by the rising of a main unprinted, for they are virtually out of almost every one's reach. We can confidently predict a world-wide circulation for our new work. It will prove a trusty guide to the inventor and a useful and convenient means of reference for the Patent Office Examiners, as well as a valuable repository of knowledge for all interested in or desirous of obtaining information regarding our industrial progress. As an addition to our mechanical and scientific literature, it enures greatly to labors. the credit of Commissioner Leggett, to whom its inception is due, while, as a monument of the national inventive genius, it is a production of which the country may justly be proud. #### IMPROVED SHIP'S COMPASS. The Earl of Caithness, at present visiting New York city, has recently exhibited to us a new form of gravitating ship's compass, invented by himself. Seamen are well aware that during heavy weather the rolling and pitching of a vessel cause the compass to oscillate, and that the consequent side movement of the points often renders proper steering a matter of difficulty, and at times results in throwing the ship far off her course. Lord Caithness' invention overcomes this difficulty by abolishing the gimballs in which the compass box is supported in the binnacle, and substituting therefor a whom he started the New Yorker, a journal which had for of light passing entirely through the glass announced the ball and socket joint. fastened directly under and to the center of the bottom of the compass box, resting on a ring formed in the top of a hollow conical support, which is firmly attached to the binnacle. Just within the ring is a small metal point, and in the ball is a slot, fitting over it, so that sidewise rotary motion of the parts is prevented, and the compass, when adjusted to the ship, is held in proper position. Attached to the ball, and counterbalancing the box and its contents, is a vertical rod, on which slides a weight. Within the branches of science and the progressive spirit of the age in a new and improved form, to wit, the large quarto shape, the binnacle, this pendulum has free play, and, by its gravity in which he lived. He was notably the friend of the indus. Its readers are now presented with twenty pages of matter, remaining always vertical, will necessarily retain the instru- trious, the ingenious, and the intelligent among the people; handsomely printed. The new publisher is Mr. M. K. Pelment in a horizontal position, no matter how deeply the ship and his journal owes much of its popularity to this trait in letreau, and his name alone is a sufficient guarantee for the nary card, is of course immaterial. In port, when it is de- much of his life had been passed in weathering political new editor is E. H. Chapin, D. D., who, as everybody knows, sired to hold the compass steady, it is only necessary to slip storms, he has left few personal enemies behind him. He is not only an able and popular writer but he is also a most the weight on the vibratory rod an inch or so down, so as to was the recent candidate for the Presidency, of the Demo- eloquent speaker. Under this new editorship and manageembrace the end and also the top of a small fixed upright cratic party, and to over exertions made during the late camat the bottom of the binnacle, securing it in place by a set screw. His Lordship's invention is one of practical utility, and is both inexpensive and a decided simplification and improvement on devices now in use. We have before us many tes- history. timonials received from the British Admiralty, and officers of the navy and merchant service, giving records of its performances, all of which unite in its commendation. We note that cement composed of glue and rubber in spirits of niter, and apathetic, but because they are in earnest. Trained by the in one instance a compass remained free from oscillation says the thing wont work. The rubber dissolves but the glue scientific culture of the times to face the facts of nature, they when the vessel was rolling to an angle of 30° and at times remains solid. In
dissolving and combining many substandemand facts and not assertions in every department of 35°. As Lord Caithness is desirous of introducing his device in the United States, we take pleasure in thus presenting an the present case, if our correspondent will dissolve the glue invention, evidently meritorious, efficient, and well worthy in a little water and then add it to the solution of rubber in the careful attention of all seamen. #### THE NOVEMBER ATMOSPHERIC WAVE. Recent reports from the Signal Service Bureau indicated mechanism. So that within a few years the accumulated within circumscribed limits, is shown by the following, written by Sir John Herschel in 1863, in which he speaks of "that reat periodical phenomenon whose recurrence is beginning Each monthly edition will contain at the least estimate one to be recognized as one of the features of our European says the report, a similar atmospheric wave began to break over the shores of Oregon and British Columbia, as shown by the weather telegrams. By the evening of the 13th, it had spread over nearly all the Pacific States and Territories, Utah passes of the Rocky Mountains. On Thursday, the 14th, it descended upon Colorado, Nebraska, Kansas, and the Indian Great Britain approaches us most nearly in the number Territory. On Friday morning, it extended in unbroken magnitude and magnificence from Oregon and Washington Territory eastward through the great trough or depression of the Rocky Mountain back bene in Idaho and Montana, and pi Valleys and over the western shores of the Mexican Gulf. Through this discovery the approach of winter may be accur ward in the great current of westerly winds. By showing that the warm air from the Pacific Ocean laden with vapor breaks over the icy summits of the Rocky Mountains, it ex plains the cause of the vast falls of snow which so effectually blocked the Central and Union Pacific Railroads last year. The air robbed of its vapor, and besides deflected upwards, s, it is believed, further chilled, and large quantities of latent heat are liberated. The warmer strata being then borne eastward explains the existence of the mild winter belt lying stantly drop. A chime of bells was rung on the same prinnortheast of the mountains of Idaho and Montana and extending to the Athabasca and Saskatchewan rivers. Whether or not this vast motion in the atmosphere has any connection beyond that of coincidence of time with the passed, is an open question. It undoubtedly has had some influence in the severe storms recently experienced. The telegraph informs us that, on the night of the 12th of vember, the polar bands of cloud, said by Humboldt to presage tempests, appeared; while on the same evening a preheavy storm which visited the lakes with great severity and swept over the whole face of the country. The more immediate effects of the present wave are said to be drier and more wintry weather. The Signal Bureau deserves the greatest credit for the valuable addition to scientific information elicited by its researches, and we trust that the Government will appropriate heavy columns of glass, each having a metal rod running ample funds to promote the prosecution of such important through its middle; thick varnish was poured on the top face #### DEATH OF HORACE GREELEY. prived the world of industry, progress, and science, of one for the electricity. The terminal wires of the secondary coll printer in Vermont, and came to New York in 1831, with struggling through the glass; the electricity would penetrate very little money, and no friends He obtained work as an perhaps an eighth of an inch, and then, as if the resistance ordinary type setter in a printing office, and soon showed his were too great, it would dart back and run around the outside undertook the printing of a one cent daily paper, which soon varnish; then again the current would make a new attack, failed; and Mr. Greeley then found another partner, with penetrate deeper and deeper, until at last the bright streams even years and a half a high reputation for its literary and electrical success The arrangement of this device is simply a ball of metal critical ability. Mr. Greeley was subsequently the editor of work he was ably assisted by Thomas McElrath, his partner, glass. without whose business abilities it is not likely that the Tribune would ever have attained its present success Although Mr. Greeley's talents were chiefly literary and controversial, he had a most enlightened sympathy for all ists known as the Universalists, has just made its appearance ay roll or pitch. The variety of compass employed, whether liquid or ordinalist has been acknowledged by all parties, and although York; subscription \$2.50 per annum, chromo included. The paign is due, it is believed, the illness which has so fatally of religious journalism which its name so appropriately imresulted Horace Greeley was a remarkable man, and his plies. The editor in his address says: "In our day, the name will occupy an eminent place in the annals of American human mind is much engaged with problems that involve > remains solid. In dissolving and contains a contain order. In human faith and teaching." spirits of niter, we think he will succeed. ELECTRICITY AT THE STEVENS INSTITUTE.--NOVEL RESEARCHES BY PROFESSOR MORTON CONCERNING THE INDUCED CURRENT. The first of a course of public lectures on electricity was recently delivered by Professor Morton, at the Stevens Institute of Technology, Hoboken, N. J., before a large and inteligent audience. The lecturer introduced his subject with a few simple, but suggestive, experiments, showing the attraction and repulsion of pith balls and gold leaf very plainly, by throwing their magnified image on the screen. He mentioned that although glass was the substance generally used as an insula tor, it was not by any means perfect for the purpose, and pointed to a series of Leyden jars which were entirely use. less as a reservoir of electricity, owing to the poor insulating power of the glass, Vacuum tubes were passed among the audience, each tube having sealed within it a smaller tube, with bulbs blown along each inch of its length; in the space between the smooth outside and the bulbed inside tube, was placed an ounce of mercury; on suddenly inverting the instrument, the mercury, in its descent, would strike against the bulbs of the inner tube, producing friction, and consequently electricity, of which the effect could be seen as a violet or purple colored light following the mercury. The subject of electrical induction was next introduced, with a simple instrument called the electrophorus, and a Holtz machine; then followed a series of experiments with induction coils. A Giessler tube was caused to revolve rapidly by means of a small magnetic engine. When the induced current was transmitted through the revolving tube, it produced the effect of a handsome piece of fireworks. A wire, with strips of paper fastened at one end, was connected with the inner coating of a Leyden jar. On charging the jar with the long sparks of induced electricity from the induction coll, the strips of paper would be repelled and stand out from each other, but on discharging the jar they would inciple, and would continue to ring for twenty minutes with one charging of the jar. Professor Morton mentioned that he believed he was the first to discover that the induced or secondary current of November meteoric belt, through which we have recently the Rhumkorff coil was capable of producing attraction and repulsion, similarly to frictional electricity. > An electrical orrery was set in motion by the induced current escaping from points, and reacting on the air; a lighted candle, held near one of the points, was almost blown out. The speaker closed the lecture with some brilliant experiments with the large coil of the Institute. Wood was torn up, and gunpowder was only scattered with one electric flash, which lasted the six billionth of a second, but ignited by another of longer duration, about the six or eight hundredth of a second. The last experiment, that of causing the induced electricity to penetrate blocks of glass, was received with well deserved applause; the assistants brought in two of one column, and the block of glass to be penetrated placed on the varnish. More varnish was then poured on the block, DEATH OF HORACE GREELEY. and the other column placed on top. The principle was simply to bring two very well insulated electrodes together, with with the New York Tribune, died on November 30, at the the block of glass between them; the object of the varnish age of 61 years, at Chappaqua, N. Y. His demise has delawas to render the path through the glass the easiest course of its stanchest and most zealous friends. The son of a New | were connected with the rods in the columns of glass. It Hampshire farmer, he was apprenticed to a newspaper was very interesting to observe the effect of the strange force intelligence and ability. In partnership with a friend, he of the block, turning the corners and scattering the layers of The Professor exhibited a block of glass three inches The Jeffersonian, and then of the Log Cabin; but his great thick (penetrated in this manner), by throwing the light work was the establishment of the New York Tribune, the through it and on the screen; two plainly marked cleavage first number of which was issued in April, 1841. In this lines showed the electric path through three inches of solid #### THE CHRISTIAN LEADER. The Christian Leader, the organ of that body of religionment, the Leader will undoubtedly take the place in the ranks the highest interests of our being. It may be an age of religious doubt and dislocation, it is not an age of religious J. E. T. has tried a recipe published in our paper for a indifference. These things appear, not because men are > In education, science is invaluable as the sole means of training and invigorating the intellect; #### NEW ICE
HARVESTING INVENTION. and patented a number of useful and ingenious inventions. destined to cause much saving of labor in the cutting, transporting and housing of ice. Not only this but an ice increasing machine is introduced by which the thickness of the ice in rivers, lakes, etc., can be materially augmented. This device consists in a number of sections made of two planks each, nailed together at right angles and braced by an end piece. As soon as the ice has acquired a sufficient thickness to bear the workmen, a sufficient number of these sections to enclose the desired space are placed end to end and secured to one another. The lower edges of the sections are wet so that they become frozen to the ice. Water is then pumped into the enclosed space to a shallow depth, which readily freezes. Another supply of water is added, and so on until ice of the desired thickness is formed. This invention was patented April 23, 1872. Having made his ice, Mr. Townsend invents an ice cutter which consists of a T shaped frame work carrying a set of circular saws which mark the ice similarly to an ice plow but do not cut through. Then driven by suitable mechanism are vertical saws destined to cut the blocks, power being transmitted by means of a horse walking on an endless belt. The power may move forward automatically as the saws cut their way through the ice, and may be placed at a considerable distance in advance so that being far from the edge of the ice there is no danger of its support breaking through. When it is desirable to have the saws work in advance of the power, they are reversed and the latter is mounted on a boat or raft. The date of this patent is Oct. 8, 1872. The blocks being cut, in order to float them to the elevator or flume where they are to be stored, a device is presented formed in three sections hinged to each other. Each section consists of a top bar, bottom bar and a series of rounds, so that the apparatus resembles an ordinary ladder. It is placed around a block of ice, a rope is attached and the whole floated to the desired point. Patented April 23, 1872. The blocks having been brought to the store house, Mr. Townsend supplies an invention for carrying or moving them about. It consists of a carrier the bottom of which is a metal plate made somewhat in the form of an earth scraper, but with its forward edge turned up. Metallic straps pass around the lower side of the plate and serve as runners, also as guides to hold the ice, and their ends fasten the plate to the long bars or handles. The carrier is made of such a falls out in large quantities. In defence of the practice, it is opment of chronic complaints, and make all sickness harder width as to receive two blocks of ice placed side by side, and is designed to secure the ice as it falls from the chute, carry it to the place where the packing is going on, and there be easily slipped from under its load. This invention was We think that all will concede that a light paper cap that seeks relief in sleep when it is tired. But one that is spurred patented April 23, 1872. #### IMPROVED SEED PLANTER. The accompanying illustration represents a convenient and ingenious form of hand planter which may be readily adapted to various kinds and different sizes of seeds. A and B are two blades meeting at their lower extremities and there protected by a metal sheath, as shown. Attached to the blade, A, is a seed receptacle, a part of which is exhibited as broken away in order to show the interior arrangements. At the bottom, and passing through an opening in the receiver, is a wedgeshaped valve, C, which is secured by being pinned in a slot in the blade, B. This valve has a circular orifice at D, and immediately above it, and resting upon its upper side, is a sliding piece, E, countersunk in the blade, A. The two blades are held apart by the spring, and are connected by the bearing, F, on which the moving blade, B, works, and also by the arm, G, to which is attached a hand lever, the fulcrum of which is at the upper extremity of the blade, A. In operation, the receiver being filled with seed, the apparatus is thrust into the ground. A downward and back ward motion of the hand lever, to the left in the engraving causes the blades to separate at their lower extremities. The valve, C, is thus withdrawn through the opening in the receiver, as far as to permit the seeds which have settled in the orifice, D, to drop therefrom, fall down into the point of the planter, and thence pass through an opening into the ground. The slide, E, descends by its own weight as the beveled upper side of the valve is drawn under it, thus preventing the seeds, beyond what are contained in the orifice of the latter, from escaping, and then ascends as the valve is may be used to suit the varieties of seed employed. Patented tention some months ago. The boiler tested were, before Mr. Louis Townsend, of Terre Haute, Indiana, has devised Lage, glass box 1,055, Omaha city, Nebraska. #### --HOW TO MAKE PAPER CAPS. It is a noticeable fact that, in workshops and factories where numbers of men are employed, a large percentage of the operatives will be found to be prematurely bald. If the cause of this affliction be sought, it will be traced to the pernicious habit of continually wearing the close cap or hat, thus keeping the scalp at an unnatural heat, and cutting off from it all ventilation. The hair under such treatment is, as a matter of course, weakened, and, decaying at the roots, aggravated by the use of stimulants. They assist the develurged that the head and its covering must be protected from to cure. It is not necessary to speak of their bad effects on the dirt and dust that fills the air of the work rooms, and that an old hat is about as good as anything that can be used. costs nothing, or at best a penny for a sheet of brown paper, will answer every requirement of protection, while at the the inability to rest springs the whole train of nervous and same time being both light and cool. Besides, it is much cerebral diseases. more cleanly to renew one's head gear with a fresh sheet of paper every once in a while, than to continue wearing a giving it the requisite rest, relaxation and nourishment, and grimy, greasy, thick piece of felt or cloth for months at a never stimulating it into unhealthy action, might go on dotime. In order, therefore, that all may be able to make ing the very hardest mental work from youth to extreme old their own caps, we have prepared the accompanying engrav. age and never suffer an atom from it-on the contrary, be ings which, with the following few words of explanation, will show how they are folded; First, provide a sheet of moderately thick brown paper, size from eighteen inches to two feet, shape as in Fig. 1. Smooth it out perfectly flat and double over as in Fig. 2. Turn it round with the fold from you, and mark the exact middle of the piece at A, Fig. 3. Then bring down both corners and measure off on the edge, B, from the point, A, Fig. 3, a distance equal to one quarter the circumference of your head. Mark the point. Now, turn the paper over so that the under side will be uppermost, and bend the apex of the triangle back from the point just marked, as in Fig. 4. Fold over the sides, Figs. 5 and 6, and with scissors cut off the lower portion, C, below the dotted line and also the points of the two lower corners of the pieces just bent over. Next unfold the paper; spread it out flat. You will find a square marked in the middle, and creases leading therefrom to the corners of the paper. Double up the material on these creases, so as to bring up the paper as sides of a box, of which the middle square is the bottom, as in Fig. 7. Smooth the folds flat, and your work will appear as in Fig. 8. Lastly, turn up the edges of the box all around, twice, folding the paper on itself. Your cap is then complete, and, if the measurement directed above was correctly made, it will exactly fit your head. ## STEAM BOILER EXPLOSIONS. It will be remembered that a series of experimental ex June 11, 1872. For further particulars address Mr. Henrick being submitted to excessive steam pressure, several times subjected to hydrostatic pressure until ruptured at their weakest points. After one of these boilers, No. 3,* had given way at the crown sheet under this treatment, Mr. F. B. Stevens, who planned and conducted the experiments, had a sheet cut away opposite the crown sheet, and the interior photographed. We now have the pleasure of presenting a copy of this photograph in the accompanying carefully made engraving > The boiler was built by the well known firm of T. F. Secor & Co., in 1846, and was 25 years old at the time of its removal from the boat. > The excellent proportions of its bracing are shown by the fact that no one detail seems to have shown special liability to fracture. The ear of a crow-foot brace, at A, the pins at B B, and the body of a brace at C, have all given under about the same pressure. The crown sheet seems to have gone down considerably under B B, and is much distorted else where. Far back, at D D, we can see, in spite of the lack of light, braces that still held. The picture is an interesting study. #### Brain Work. One thing I would like to impress upon those who are exceptionally excitable. The very slightest stimulants, which others may use with impunity, are bad for them. I have known cases of chronic neuralgia, from which torture had been endured for years, cured by ceasing to drink tea and coffee regularly, or by leaving off smoking. The nerves are such delicate affairs that they often make us a great deal of trouble with very little cause, seemingly. Excessive brain work renders them much more susceptible. This susceptibility must be counteracted by the avoidance of those things which tend to excite. What a steady brain worker wants is to replace (not stimulate) his vitality as fast as he uses it up. To this end he wants everything that is
nourishing and soothing. A stimulant crowds out some part of the requisite nourishment, since the system can only receive a certain proportion of matter into it at a time and appropriate it harmoniously. If you set it to work on a stimulant, or set a stimulant to work on it, the action is mutual. It will not assimilate fully the nourishment which may come immediately afterward All the diseases to which we are constitutionally liable are ailments of the brain. But most of these, I believe, are to be traced originally to their use. A healthy brain naturally and driven on by stimulants loses that inclination. I believe that one, working the brain at proper hours and benefitted .- Howard Glyndon. #### COMBINED TOOL. The ingenuity of some of our inventors has often been exercised upon the combination, in one instrument, of the tools in daily use by some classes of mechanics, and especially by housekeepers; and we here illustrate a successful arrangement of many of the useful implements most commonly needed. It is not necessary that we should give a lengthy description, as our engraving will show the numerous and varied uses for which the appliance is available; and its simplicity of form is such that it can be sold at an economical price. The invention consists in combining the following named useful tools, in convenient form for general purposes, namely, ham mer, A, tack and nail puller, B, stove cover lifter, C, scraper, D, pincers, E, adjustable wrench, F, as burner tongs, G, nut cra H, cork presser, I, six inch rule, J. screwdriver, K, box opener, L, carpet stretcher, M, door fasten- It was patented May 9, 1871, by Mr. J. Gorrick THE school ship Mercury, owned by the city of New York and used as a reformatory for unruly boys, recently sailed on her third cruise. The vessel will proceed to the Volcano Islands, south of the equator, taking soundings and deep sea temperatures as often as may be practicable; thence to Rio and Barbadoes, and then back to New York. All necessary instruments for determining velocity of currents, sounding and collecting deep sea plants are provided. The information obtained will doubtless be of much scientific value, inasmuch as no correct charts of tropical ocean currents have as yet been published. TRANSMISSION OF MOTION. Pulleys are sometimes made loose on the shaft, and are used mainly on what are called countershafts, for the purpose of starting and stopping machines. Countershafts are usually short shafts placed over or under the machines to be driven, and, receiving the power from a main line, transmit it to the machine. Thus, I have here an example of a counter shaft for driving a lathe (see Fig. 19). You will observe that this shaft is necked down at its ends (a and b), to a smaller size; these smaller ends are the journals. It has upon it a cone pulley, c, corresponding with the cone pulley on the lathe head to be driven, the various sizes giving different belt speeds, and it has also a pair of fast and loose pulleys, d, e. Now this may be taken as an example of a counter-shaft; but all countershafts are not made in this manner. The term countershaft is applied to all shafts driven from the main line when placed at or near the machines to be driven, and sometimes in cotton and woolen factories some really long lines, driven from the main line in the same room, are called counters or counter lines. Such lines, differing in no respect from main lines except in name, need not be especially considered. Countershafts such as I here show you, Fig. 14, are peculiar in themselves, and must be considered by themselves. In this example there are fast and loose pulleys d, e. When the belt is on to the fast pulley, d, it will, in causing it to revolve, rotate the shaft also, and thus drive the machine connected with it; but when shifted on the loose pulley, e, that pulley can turn without turning the shaft. Now, you will observe that the shaft in the loose pulley is of the same size as the journal part, and the hub of the loose pulley is longer than its face is wide; this is an important feature, as it insures stability and durability. It makes the pulley run steady, and its extended bearing makes it wear well. It is advisable to so ar- range countershafts of this character as to admit of the loose pulley being near the hanger, so as to admit of the shaft being turned down to the journal size where the loose pulley is. Thus, for a double purpose, the box of the hanger holds the pulley in place between it and the shoulder of the shaft, and the lubrication of the bearing helps to oil the loose pulley, as much of the oil will find its way along the shaft. The hangers for that counter need not be made with a vertical adjustment. They should be provided with the swivelling principle in the box, and as the boxes can be slid on from the end, they may with advantage be made solid, not in halves, as are the boxes of line hangers. I have here two examples of hangers to countershafts, called counter hangers. One of these (Fig. 15) is for use on a countershaft where there are fast and loose pulleys; the arm is to carry a belt shifting rod, which slides in the adjustable guide, and by suitable belt forks is used to push the belt from one pul- ley to the other. As many counters are made without fast and loose pulleys, there are hangers made without the shifter found that pulleys might be reduced in weight, and, by the nut traversing said screw, and connected with the knee by arm, and this form of hanger is extensively used in factories for the counters of machines having the fast and loose pulley on the machine itself, as is the case with the looms. let me explain this more fully, taking for example the practice that holds in England at the present day. Theoretically, motion can be transmitted more economically by means of gear wheels than by means of belt. Gear wheels transmit system from those who were still anxious to sell by the ing with it the stirrup, E, and also the knee. By this means motion without loss by slipping, as might be the case with pound; but in time the manifest advantages of the plan the sawyer can reach the setting apparatus from the side of belts. Gear wheels are used in England to transmit the caused its adoption by other makers. power of the engine to what is usually called the jack shaft; from this shaft, by means of bevel wheels and upright shafts, the power is conveyed to the various stories and thence by bevel wheels to the line shafts. This system insures of the machine business. All conceivable wants of the trade the transmission without slip to the lines, but it is costly and are met by specially contrived devices, which can be made together and actuated by a single hand wheel or crank. By very cumbersome, inasmuch as very high speeds are not pos- in quantities and kept in stock ready for sale. Hangers having three blocks, those on the ends communicating, as sible with gearing. With a very rapid motion the teeth are broken by the back lash. Sometimes wooden teeth or cogs of shaft to the foot), are made from carefully designed patare inserted in the driving wheels, and the driven wheels terns. Pulleys fitted for double or single belts, for wide or ing in the extension red, a common defect in other devices. expedient to use no higher velocity to the geared shafts than 100 revolutions per minute, and the machine driven necessi- used are in a degree uniform through the trade. In regard tates the use of pulleys 3 feet in diameter to drive them. The first cost of the line would certainly be less if the line could be run at 200 revolutions, and pulleys only 18 inches in diameter used to drive the machines. Well, the practice here is to obtain a speed of say 400 revolutions for lines in characteristic or the state. spinning rooms, and to use pulleys not more than 9 inches in diameter. These high speeds are not attainable with gear-inch shaft is really only one and fifteen sixteenths in diameter, ing, so belts from the engine to the line have come to take the and so of other sizes; they are all one sixteenth less than place of gearing in all well constructed American mills, and their names imply; and the couplings, hangers, etc., are this with a manifest gain in diminished first cost, in econom- made to conform to these sizes ical use and in steadiness and smoothness of motion. England some peculiar spinning machines, and some, to us, pose of transmission. Belts have become the recognized novel machines for preparing the wool with the intention of means of transmission, and mills formerly driven by gearing making fine yarns. They also brought out a boss spinner to put up the machines and organize the factory. They consulted me in relation to the shafting to drive the new mavery simple matter; but sometimes shafts are required to chinery, and I asked for speeds of machines, etc., to enable me to arrange the proper speed of shafts, power, etc. They re- This can be done by belts, provided the belts be carried over ferred the matter to this spinner, who said that he did not know what speed the machines were to run, but if I would make the shafts 3 inches in diameter and run them at 100 revolutions per minute, the pulleys should be 36 inches in diameter. This was, of course, information enough to guide me, but, instead of making all the shafts 3 inches diameter, I made some only 24 inches and giving a speed of two hundred quire more than the time allotted to one lecture to fully exand forty. I could use pulleys only 15 inches in diameter. When the plan was shown to the spinner, he condemned it it, trusting that I may have an opportunity at some future toto. These machines could not be driven from any less | time to explain it more fully to you pulleys than 36 inches; that he knew, and no argument could convince him that the same speed was being obtained to the machine, is, as I have shown, a very important one, at a less cost. The mill owner, a good business man, but and I cannot
omit mentioning that I had an opportunity renot much of a mechanic, was in doubt as to what to do, but was convinced when he saw the estimate of the two systems, driving two large manufacturing establishments. The line, so far as power was concerned. I could relate many other examples of converts to the American system of an example of shafts in rigid bearings. This will show you mill shafting, whose conversion was brought about through clearly how needful it is to study economy in transmission of their pockets, but who are now enthusiastic in praise of the power; and I trust what I have said to you this evening sion by means of belts in place of gearing. It is in America only that the production of all that pertains to mill gearing and shafting has been reduced to a systematic manufacture. To make a machine is one thing; to manufacture machines is quite another thing. Thus one sewing machine may be made by itself at a cost more or less in proportion to the labor expended upon it. But the same machine, by means of organized labor, can be produced in quantities for a tenth of the cost of one machine. Hence systematized manufacture is needed to insure cheap productions. The hanger which Mr. Bancroft showed to the New England machinists would indeed have been an expensive luxury if simply made one at a time, with no special tools fitted to its production; but with most special tools, thorough organization of the labor employed, and the production of immense numbers of them, with all parts made to gages and interchangeable, the cost is less now than what the commonest, rigid bearing hangers were made for formerly, and their adoption is now universal. Apart from systematized labor, an important item in first cost is weight of material. Not very the log rests, and by which it is moved. C is a horizonta many years ago all shafting, and all pulleys, and everything relating to the machine for transmitting motion, were made and sold by the pound. Purchasers were attracted to the makers who charged the least per pound, and no very great care was taken to see that too many pounds did not go into the various parts of the machine. Shafts of a given size could not be made to weigh more or less by different makers; but much needless weight might be put into hangers, into couplings, and into pulleys, so that the price per pound really came to have no meaning so far as total cost was concerned. Some dozen years or so ago, the house of William Sellers & Co., feeling that this system of selling hangers, pulleys, couplings, etc., by the pound was not the proper way to dispose of such things, determined on a radical change. They instituted an extensive series of experiments to demonstrate just how strong and consequently how heavy each article comprised under this head should be. They screw immovably affixed to the head block. D is a sleeve employment of suitable machinery, be more perfectly made. | means of the stirrup, E, as more clearly shown in the sec So of hangers, and all that pertains to shafting, except the tional view, Fig. 2. The same engraving represents how the shafts. They then published a price list, offering to sell edges of the horizontal portion of the knee, B, are greeved to I have already mentioned that there is a distinctive differ-cach item at some certain fixed price, dependent upon its slide in a slot in the upper portion of the head block. Connected with the sleeve nut, D, is the bevel gear, F, forehand just how much money would be required to obtain which is actuated by the rod and hand wheel, as shown, B what he wanted, and for strength and durability he took the turning the latter, the sleeve nut on the screw, C, is caused guarantee of the makers. There was great opposition to this to rotate, and consequently to move forward or back, carry- for the production of "shafting," and the same attention is wheel. This rotates the shaft, H, which ends in a miter varying in size and "drop" (that is, in distance from center shown, with the one on the center of the log, it is claimed are made of iron with the teeth carefully planed to proper shape. Wood and iron teethed wheels can run rather faster than iron on iron, but still not up to the speed now common. Last, but not least, all these things are made to standard. Patented through the Scientific American Patent Agency, April 16, 1872. For further information address the inventors, and the difference of the carefully planed to proper patents are made to the work each has to do. April 16, 1872. For further information address the inventors, and the difference of the carefully planed to proper patents are made to the work each has to do. Last, but not least, all these things are made to standard tor, Mr. H. C. McEwen, Oakdale Station, Alleghany Co., Pa. in this country. Let us suppose, for instance, that it is found gages, so as to have their parts interchangeable. A nomenclature, too, has come into use, and all the technical terms The adoption of high speeds for shafts has, as I have said, Not very long ago, an enterprising firm imported from rendered it almost impossible to employ gearing for the pur be driven at right angles to the axis of the source of motion. guide pulleys, so set in relation to the driving and receiving pulleys as will enable the band to lead properly from one to the other. Various devices have been arranged to effect this with readiness, and it is not an unusual thing to carry belts plain. I must therefore pass it by with this brief allusion to The subject of the transmission of motion from the motor one at so much less cost than the other, and when he was amount of shafting, reduced to the same basis in each, showed shown that the pulleys on the machine were only 12 inches in one case a consumption of ten horse power to run the in diameter, hence would require no larger pulley on the empty shafting, and in the other thirty horse power only. entire principle of light shafts, small pulleys and transmis- may at least furnish food for thought, and lead you to inquire into the subject further. #### New Electrical Battery. M. Lionel Weber has invented a new battery composed of a porous diaphragm filled with plumbago. This vessel is placed in a glass or porcelain vase containing a saturated so-lution of ammoniacal chlorhydrate. Into the plumbago is introduced a plate of charcoal which constitutes the positive pole; and into the solution which surrounds the diaphragm is plunged a plate of amalgamated zinc, forming the negative pole. This battery has been found to have great force, to be con-stant in the support of regular and continued work, to be economical and to need but little attention. #### HEAD BLOCK FOR SAW MILLS. The invention herewith illustrated is designed to facilitate the operation of setting logs to the saw in the process of sawing lumber, so that the thickness of the piece to be cut may be determined with accuracy. In Fig. 1, A is one of he head blocks of the carriage. B is the knee against which the log, and also set the latter with great precision. At G is Various establishments have been fitted up at great cost shown another bevel gear which is also actuated by the hand #### Correspondence. The Editors are not responsible for the opinions expresse by their Corre #### Self-Propelling Fire Engines. To the Editor of the Scientific American: The terrible fire in Boston and the world-wide horse disease, occurring so closely together, have naturally turned our advantage of the scientific school, and vice versa. thoughts to the subject of steam power versus horses The fire department of Cincinnati has had several selfpropellers in use for many years, and has tested them very thoroughly for this special purpose; and I am informed by Mr. Fatta, one of their engineers, that the self-propellers have not as yet been sufficiently successful as to exclude horses, It requires several minutes to get steam up to a propelling point, and in that time horses can be hitched to the engine. and will often reach the point of action by the time the steam is up to the needed pressure. When the fire is at a considerable distance, however, and the steam gets to its working pressure before the engines arrive there, the surplus steam may be used very efficiently to assist the horses over difficult ground. As it does not add much to their cost or weight, or in the least impair the efficiency of the fire engines, it seems to me that the propelling device should be attached to every engine for use in cases of emergency. One wheel is sufficient to propel an engine, and a steering device is not needed, the steering being performed by horses or if necessary, by men. I saw a self-propeller in use at the late fire in Boston; one of the hind wheels was driven by an endless chain from a small chain pulley or "sprotchet" wheel on the end of the crank shaft of the engine, which could be released by a clutch when the propelling device was not in use. The ratio was about one turn of the traction wheel to six or eight of the crank shaft. The only extra parts used in this case are the chain, two simple chain wheels, one eccentric, and a reversing link. Engine houses should be on high ground, for the reason that it is easier to hurry these heavy fire engines down hill than it is up, and everything possible should be done to facilitate their movement to the fire. F. G. WOODWARD. Worcester, Mass. #### Freezing Water in Bottles. To the Editor of the Scientific American: In the winter of 1865-66, I succeeded in freezing water solid in glass bottles, filled to the corks, without breaking them, by the following method: Several bottles were filled with water, and perforated corks were inserted into their necks, rather tightly. A glass tube, open at both ends, and drawn to a narrow conical point, was then inserted, point downwards, through the corks, to a little below the middle of each bottle. The tubes were of rather thick glass, having about a 3-16 inch bore, and projected about
an inch above the corks. The bottles, thus prepared, were set in an exposed place, in extremely cold weather, and left over night. On the following morning they were found to be unbroken, yet each bottle was filled with solid ice. The covers and tubes, having been forced out, were lying beside them on the shelf. A portion of the water had frozen in the tubes, and this ice was forced up and partly projected out at their tops, to the hight of an inch or more, and was more or less bent to one side and downwards. This must have taken place before the tubes themselves began to be forced up, by the expansion consequent upon freezing. Thus the tube at first served as a vent, while the water was freezing at the top and bottom and all around its own circumference; but at length, the ice beginning to form about the conical point of the tube, this was gradually forced up, the space which was gradually relinquished in the center of the bottle being sufficient to compensate for the further expansion of the water. COE F. AUSTIN. Gloster, N. S. #### Juice vs. Cider. To the Editor of the Scientific American: I agree with the writers of two articles, lately published in the SCIENTIFIC AMERICAN, that there is a difference between cider and juice, but I prefer the juice; and I think any person who is very fond of apples would do the same Not long since I read that a physician-I have forgotten who-had never known a person who was very fond of fruit to become a drunkard. He regarded the two tastes as antagonistic. If this be so, we ought to cultivate a taste for ait by drinking juice rather than cider. As sulphite of lime is used to keep cider sweet, I would like to inquire what the action of the drug is when taken into the stomach? As its office is to absorb oxygen and prevent the cider becoming oxidized, I do not see why it would not, like phosphorus, interfere with the oxidation of the blood by absorbing a part of the oxygen taken in by the lungs. If it would have such an effect, to drink it would be equivalent to breathing a poorer quality of air. I presume if cider could be kept sweet as long as desired, and then exposed to the air until the sulphite was changed to sulphate, there could be no objection to its use. Those who know will please inform us who make cider, so we shall know whether to use the drug or not. H. A. SPRAGUE. Charlotte, Me. ## Scientific School at Princeton. To the Editor of the Scientific American: they will be glad to hear of a new one. Last June \$200,000 was subscribed by Mr. John C. Green, for the purpose of founding a scientific school in connec tion with Princeton College, and already a large building is in course of crection. The building will probably be completed and the scientific school in operation by September next. This school will necessarily be of great advantage to The want of the age has been an ideal education, an education not exclusively scientific, not entirely classical; but an education embracing, with its practicality and science, a fair degree of literary culture. We seem to be progressing toward this education. Already Harvard and Yale have declared in favor of it, and now Princeton comes to the front. The day is not far distant when all our larger colleges will have scientific schools, and made, science will enter largely into their courses. Princeton, N. J. #### Inventions Wanted. To the Editor of the Scientific American: I would respectfully call the attention of inventors to the fact that three articles need to be invented, either of which will be a fortune to the successful inventor: A spring to close doors slowly, without slamming. A detachable metal or other tip for children's shoes. A sewing machine chair attachment, to be attached to any chair to support the back of the operator AF INVENTOR. #### THE STURTEVANT BLOWER AND ITS USE? The air blast, as many are aware, was but a short time ago applied to but few uses; indeed, its whole employment was confined to furnaces and forges for working metals and in connection with steam boilers. Coarse fans or, in cases where an especially strong blast was required, ordinary pumps constituted the mechanical device. To supply this mani fest deficiency, Mr. B. F. Sturtevant, of Boston, invented what is now known as the Sturtevant blower, and in 1867 obtained his first patent, which was subsequently illustrated with engravings in these columns. Since this date thirty patents upon the original form have been granted, and so widely has the manufacture become extended that it is now stated that no less than nine thousand blowers are in use. We have obtained from the above gentleman the following facts, regarding the various operations, etc., to which the different styles of the Sturtevant blower may be advantage ously applied, and we believe that the information thus for the first time collected will prove an excellent means of reference for manufacturers and others, besides exhibiting the many uses to which this ingenious machine may be adapted: The pressure blower may be used for supplying blast for forges, all kinds of furnaces for smelting, melting, heating railway and other conveyances, has been driven away. and converting all kinds of metals and ores, ranging from the jeweler's blowpipe through the long catalogue of silversmiths', coppersmiths', and blacksmiths' forges. For forges and furnaces for manufacturing agricultural implements, hardware and cutlery, from the plow to the penknife. For blowing the furnaces in railroad and steamship building and repair shops, iron and brass founderies, Bessemer steel works, cast steel works, rolling mills for the manufacture of iron and steel rails, sheet iron and boiler plate and merchant iron. For making blasts for steam forges for forging shafts for steamships, anchors, etc.; and also for affording a blast for furnaces for smelting and packing gold, silver, copper and lead ores. Exhaust fans are employed for removing shavings from planing and molding machines, sawdust and dust from sand wheels such as are used for polishing lasts, carriage spokes, shoe bottoms, felt hats, etc. and emery wheels for polishing all kinds of hardware, smoke and gas from smoky smith shops and manufacturing establishments and chemical works. Steam and vapor arising from paper machines and all drying cylinders and dry rooms; also sweat from millstones, offensive odors from try kettles and dyeing esstablishments, dust from rag and cotton pickers, flax and rope machinery, ventilation of coal mines and all underground apartments or cellars; also for exhausting impure air from public buildings of all kinds. Two of these fans are already in use in the United States Senate Chamber, and two in the House of Representatives, being driven by very powerful engines and capable of removing 1,800,000 cubic feet of foul air per hour. and elevating pack s and freight of all descriptions ing from one pound up to two tuns. Hot blast blowers are used for taking the hot volatile product of combustion from large boiler chimneys and forcing it into kilns for drying non-combustible materials such as fertilizers, brick, etc. The hot blast machine (tubular steam heater and blower combined) is employed for heating the air with either live or exhaust steam and blowing it under beds of wet wool and cotton, and also cotton waste and wadding, into machines for drying wet cloth and hosiery, into kilns for drying lumber of all kinds such as are used in finishing. Also for doors, sash blind and carriage manufactories, plano and organ factories, staves for barrels, tubs, pails and clothes pins, brick, grain, tobacco, sliced fruit and vegetables of all kinds, chemicals, glue and gunpowder, and for drying leather and skins in tanneries. These machines not only supply the necessary heat for evaporating the water Knowing that the readers of your journal feel interested in the establishment of scientific schools, I feel sure that blast expels the moisture from the dry kilns, keeping them charred paper. The collodion forms a thin transparent film, thoroughly ventilated and filled with dry hot air. #### Eric Canal Navigation. Navigation on the Eric Canal, New York, has closed for the season, and with it ceases the limit of competition for the State reward of one hundred thousand dollars, offered for the best form of canal boat motor, in lieu of horses. By the terms of the law passed in 1871, a reward of one hundred thousand the college, as students in the academic department can take dollars was offered for the device best suited, in the opinion of the Commissioners, as a substitute for horse towage. Competitors were to exhibit their improvements at their own expense, in working order, in boats carrying not less than 200 tuns of freight in addition to fuel and machinery; and they were allowed until the close of navigation of the present year to make their trials. Quite a number of boats have been tried upon the canal, some of which proved highly successful. The award of the Commissioners has not yet been > The closing of canal navigation compels about forty thousand men to seek employment during the winter at other occupations. Probably half a million more, who have worked on the rivers and lakes of the State, must soon look to something else for support, for the icy season is at hand. > In the aggregate, the canals of the State of New York are are eight hundred and thirty-four miles in length. The Erie extends from Buffalo to Albany, three hundred and fifty miles; the Chenango, from Binghamton to Utica, ninetyseven miles; the Genesee Valley from Olean to Rochester, ninety-five miles; a branch of the same, from Conesus to Danville, twenty miles; the Black River, from Rome to Carthage, including a distance of forty-two miles by river, seventy-seven miles; the Chemung, from Elmira to Monte zuma, including a distance of thirty-five miles through Seneca Lake, eighty miles; the St. Paul's, a branch of the Erie, from Montezuma to Seneca Falls, thirty miles;
and the Delaware and Hudson, from Honesdale, Pa., to a point on the Hudson River opposite Rhinebeck, about eighty-five miles of which are in the State of New York. These, in the season, are navigated by nearly 7,000 different boats, or an average of eight boats to each mile of canal. Of these boats the largest have each a carrying capacity for 225 tuns of as sorted cargo, or 2,000 barrels of flour, or 9,000 bushels of grain. The smaller boats have a carrying capacity of 125 tuns, in proportion as indicated above. The average cost for the construction of the boats used is, for the larger, \$5,000, and for the smaller, about \$2,000. The average monthly cost of running, including tolls and towing, is about \$800 per boat, which, it will be seen, involves a ver rge capital for simply the running expenses of a season. The men nearly all complain of the manner in which the canals have been managed by the State authorities, and express the hope, earnestly, that the next Legislature will inaugurate a reform. They charge the great falling off in the canal trade upon the failure to keep the canals in proper order, and the heavy tolls by which, they declare, a vast business, which now seeks #### A London Fire. On the day when Boston was burning down, a great fire was consuming the largest and what was supposed to be the most thoroughly fireproof building in London. This was the gigantic City Flour Mills, in Upper Thames street, near Blackfriars bridge. From its extraordinary hight, it towered above all the other wharves and buildings in the neighborhood, and it had no less than 400 windows in and around it There were seven stories to it, each of them being divided into warehouses and machine rooms, and the quantity of grain that was continually kept in it was extremely large. The building was 65 feet wide and 250 feet long, one end fronting on the Thames and one side on a creek from the Thames, from which barges might be laden. The fire was discovered shortly before seven o'clock in the morning. Very soon thirty engines and upwards of 200 firemen, under the direction of four superintendents, were in attendance. floating fire engines also appeared in due time and got as near to the barning premises as the condition of the tide at the time would allow. A capital supply of water was obtained, but the fire, in spite of every effort that the skill of the firemen enabled them to make, spread gradually through out the entire upper part of the building. The floors one by one gave way with a tremendous crash, throwing the entire weight of the contents on those beneath. Although, being daylight, no reflections of the flames were visible, yet as the fire became known the bridges and all the streets in the neighborhood were densely crowded. On the river also the floating engines were surrounded by skiffs and other small Pneumatic despatch blowers are arranged for conveying craft, all filled with spectators. The land engines played from every conceivable point round the building stood on the roofs of high premises abutting upon the mills, and thence managed to pour, into the windows and apertures of the building, tuns upon tuns of water. Very little impression seemed, however, to be made, and the fire was likely to continue in that state for a day or two, owing to the immense bulk of the smouldering contents. ## Preserving Charred Papers. Mr. E. H. Hoskins, of Lowell, Mass., has suggested a very useful and practical way of preserving and giving toughness and flexibility to charred paper, which has proved to be of much importance in the identification and copying of valuable documents, charred by conflagrations such as the recent Boston and Chicago calamities. We have seen specimens of charred papers and bank notes ,thus treated, that can be handled with impunity. The printing upon the charred bank notes can be readily discerned. The preserving process consists, we believe, in pouring collodion upon the surface of the dries in a few minutes, when the process is complete. #### PATENTS. ernal, comes down to us from a transatlantic custom of very doubtful parentage. The English monarchs of the sixteenth and seventeenth centuries were wont to bestow on some royal favorite the privilege of the tanning of leather, the sale of salt, or other desirable monopoly. And when freedom, all the dentists of the country combined to break an India 'slowly broadening down from precedent to precedent," had taken away this regal prestige, the same privilege might be acquired by him who could prove that his nowly discovered invention would benefit the community. This wild graft of royal patronage, transplanted across the ocean, has burgeoned into one of the most beautiful branches of the tree of liberty. The Patent Office stands side by side with the common school as the ripened development of a distinctively American civilization. In literature, in commerce, in the arts of war, and in granted for cultivators, two hundred and ten for plows, one many such things, different nations may be our superiors; in a widely diffused education and in inventive genius for labor-saving machines, America leads the world. As at present systematized, the grant of a patent is in the nature of a contract. Government says to every man of in-ventive skill that, if he will apply his mind and his capital to attachments; and the applications for newer inventions come invention, and shall develop an improvement upon any existing "art, machine, manufacture, or composition of matter," he shall enjoy the benefit of his invention for the next seventeen years; at the expiration of that time the invention is to become the property of the public. So well is this contract appreciated that, short as has been our national existence, one hundred and ten thousand persons have already entered into it, and fifty thousand more applied and were rejected. The number of applications for patents steadily increases, as well as the objects of invention. These applications now arrive at the capital at the rate of twenty thousand a year. It is the general opinion of those who study our patent system as a science that we are just on the verge of new discoveries that shall benefit the world more than any past invention. We have bridled the lightning and taught it to carry messages; but suppose the awful force of electricity, that can crush the hardest rock and bring a more tremendous known motor, should be as subject to our control as steam is! taken off the mother and sister and put on the machine. Suptic labor before the airy captive should escape! There is no used, or would have been applied for by a marine engineer. a warning against greediness; it had had two guinea pigs power on earth so great, so steady, so massive, as the tide Twice each recurring day it lifts the whole body of sea water a number of feet into the air. It penetrates up every creek and stream and river, forcing the water to rise and overwhelm that envelops the whole world, become subject to the will of man and forced to do his bidding, we should have an instrumentality to bear the burdens of mankind infinitely more pow erful and more general than anything now in use. We travel to-day on solid earth; should some of the numerous applicants for patents for the use of balloons or flying machines happen to succeed, and we should all take to travelling upon the wings of the wind, what would become of railroads and turnpikes and steamboats? Nor are these idle speculations. not seem so strange to our enlightened children as the telegraph, the sewing machine, the railroad, and the steamboat, massive club from New Zealand, which he recommended to do his bidding in the service of humanity. The vast majority of patents contain no remarkable invention; they merely make some slight progress upon existing facts. Not in one great tide of invention does improvement come, but rather in small, gentle waves, each advancing only a few inches long, and poisoned with some mysterious not too big; he has large veins at the extremities, and his almost imperceptibly further than its predecessor. And it is that slight difference that gives success to patents. The inventive mind is so constantly on the stretch that similar are so deadly that the moment anything is struck by the claims are constantly made by rival inventors. When petro. arrow it dies. The virus, however, is only fatal when mixed and his legs are firm and round. He has also a broad, arched leum first began to enlighten our darkness, there were twentyfive claimants at one time before the office, all asking for substantially the same mode of raising oil out of the solid substantially the same mode of
raising oil out of the solid substantially the same mode of raising oil out of the solid substantially the same mode of raising oil out of the solid substantially the same mode of raising oil out of the solid substantially the same mode of raising oil out of the solid substantially the same mode of raising oil out of the solid substantial the solid out of earth. And when velocipedes so suddenly leaped into fashion Hoxne, in Suffolk, was exhibited—through clubs and arrows, a few years ago, four hundred and thirty-two applications for man has gone on inventing weapons till he has now the velocipede patents were filed within four months, and of these deadly Snider, with which we civilized people are as ready thirty-three were contemporary claims for the same idea. to kill one another before we have ever seen each other, as ance; they tune his mind to screnity, and his soul partakes Every spring brings forth a crop of stove patents, each manufacturer preparing for the coming winter by striving to surpass his rivals in the prettiest pattern and the greatest warmthgiving power. Few persons think much of the form of the them. Witness the lion, with his teeth and claws; the viper vantage, in regard to others, that it does not make him lamp they buy; yet lamp patents are renewed every year. with its poison fangs; the elephant with his tusks; the tor- poorer, but richer. He eats slowly, and has not too much At one time the student lamp, with an argand burner, yields pedo with its electric battery. Man is not descended from a thirst. Too great thirst is always a sign of rapid self-consists manufacturer a small fortune; the next year some fortuits manufacturer a small fortu nate genius notices that two wicks give an imperceptibly win has mistaken the law for the by law. It is true that larger light than the argand; and the patent he obtains from the sponge, the lowest in the scale of created organisms brings him prominence in all the lamp markets in the country. to man, there is a certain similarity of structure. Mr. Buck-One of the most essential elements in patents is novelty; yet land showed by a simple diagram the ascending scale of creaapplications are continually made for patents based on ideas tion, from a sponge-a simple stomach-upwards through as old as the Christian era. Pliny, writing in the first century, the various classes to the head of all, man; but, he added, describes harvesters for heading grain as then in existence on between man and beast, between man and monkey, there is the plains of Gaul; and Paladius mentions them again in the a hard line drawn-a great gulf fixed. When a monkey fourth century; but both of these lacked some idea that would walks as upright as he can, he is in a stooping position; his fellcity, has no thirst after honors or riches, and banishes all adapt them to general use. Tailors' machines were in smooth hands hang down, and he never raises his arms except to thoughts of to-morrow. running order in Paris long before Hunt and Howe perfected seize some support. When a man in the circus, or in the the present invention. It remained for the Americans to street, tries to imitate a monkey, he throws his arms up in lighten the domestic cares of the female sex throughout the the air—which a monkey never does. Os homini sublime interest is the birth of a hippopotamus. The babe is three feet world. attain a general circulation. But a patent of wide use, how t various conditions of the animals possessing them, and are continuously, and enjoys life very much The present system of conferring patents upon inventions with a large profit. Inventions for sewing machines, of of public advantage, says Mr. W. R. Hooper, in Appleton's which one company makes about three thousand a week, inwith a large profit. Inventions for sewing machines, of appetite is satisfied by wishing for something to eat. ventions for the use of India rubber, for agricultural imple- round, and Mr. Buckland asked if any young lady would like ments, fire arms, and modifications of leather and paper, to honor her "poor relations" by accepting such a hand. It have accumulated fortunes. Nor is it possible to tell the measures nearly six inches across and eleven inches longextent of the ramifications of a patent. A few years since rubbia patent; every one of them had to pay a royalty when ever he inserted a set of teeth in vulcanized rubber. Their combination failed, and the royalty still is paid. One of the house-not that he could speak New Zealand to them, or they most profitable patents ever issued in this country was for English-but, after conversing with them by means of roast the manufacture of horseshoes. In England one of the most lucrative has been the Bessemer manufacture of steel. Most as snakes do not exist in New Zealand, and probably none of patents concern themselves with agricultural or domestic labor. In one year two hundred and twenty patents were hundred and eighty for churns, one hundred and seventy five for washing machines, one hundred and fifty-one for sewing machines, one hundred and forty for stoves, and another hundred and forty for gates. Nearly eighteen hunin daily. For these applications for patent rights increase much faster than the population. In 1851 there were two thousand of them; in 1870 nineteen thousand one hundred and seventy one, of which thirteen thousand three hundred and twenty one were granted. Inventive skill does not depend upon education. Prussia is as well educated as this country; but in 1867 only one hundred and three patents were issued in Prussia, as against thirteen thousand in this country. Vermont has as good schools as Massachusetts; but the Bay State secures ten per cent of all the patents granted to the nation, while the Green Mountain State has less than one per cent. To quicken the inventive mind demands a large amount of capital engaged in manufacture, a skilled body of workmen, and a profit in the improvement of manufactures. these coexist, patents are in demand. As a general rule, valuable inventions are the results of long power to bear instantaneously on a given point than any other years of close thought and much expenditure of time and the nature of the poison. The appearance presented by the money. Capital never offers itself to the inventor without virus when examined through the microscope was very pe-In that instant the motive power of the world is more than the promise of an enlarged and speedy return. Nor do valudoubled. Within twenty years the burden of sewing has been able ideas often enter the mind of the outsider on any subject. Abraham Lincoln was a very able lawyer of Illinois when in pose the flying wind that hovers over our roofs should be May, 1849, he obtained a patent for lifting steamboats over action of the poison when injected into a wound. The snake imprisoned and so used that it should perform all our domes river bars; but it may be doubted if that patent has ever been who was the object of this unique discovery was in its death #### Curiosities of Natural History. We call the following from a recent lecture in London by Mr. F. Buckland: He began by declaring that he was utterly opposed to the Darwinian theory of "development," and then the solid land. Should this immense amount of tidal power, Mr. F. Buckland: He began by declaring that he was utterly explained the grounds on which his opposition rested. Man, cruel to feed the horrid snakes on the pretty white mice," he said, is unarmed, and his position of supremacy over all while the common brown mice in such a case would have recreated beings taught him to invent what Nature had not ceived no pity. A brown mouse, if the snake does not cat given him, that is, weapons of offence and defence. The him, will cat his way out of the cage, and thus show his first instrument found by man is a common stone; this he gratitude to the snake for not devouring him by making an cuts and adapts to his use till he makes knives, arrowheads, aperture through which Mr. Snake can also make his exit, and hatchets, which afford him the means of securing his while a white mouse will not attempt such a burglarious prey, making war on his enemies, and manufacturing other mode of escape. But why should the white mouse be pitied The employment of lightning, of wind, of tide, of air, will implements, such as wooden clubs, which could not be in such a death more than a brown mouse? wrought without the aid of harder substances. He showed a the Chief of the Police as a preferable weapon to the " staff" seemed to their grandparents. The child may now be living the Chief of the Police as a preferable weapon to the "staff" who will yet see them all the willing slaves of man, joyous to wieldly affair was used rather as a sign of authority-by the Lord Mayor of New Zealand perhaps-than as a weapon of any rate, too much ruddiness in youth is seldom a sign of warfare. In contrast to this large club, Mr. Buckland ex- longevity. His hair approaches rather to the fair than the hibited some small South American arrows, or puff darts, black; his skin is strong, but not too rough. His head is the savages of Africa or of the South Seas with their less re- in the pleasure which they communicate. He does not eat fined weapons dedit. The similarities in structure exist, but they exist six inches long, weighs one hundred pounds, and is of the Most patent rights are limited in their application, and never through design, through a special adaptation of them to the color of a polished mahogany dining room table. It suckles ever small the royalty it pays, benefits the happy inventor no more caused by "development" than a hungry man's The cast of an immense hand of a gerilla was passed Speaking of poisoned arrows leads us to poisonous snakes. Mr. Buckland said he could not understand the antipathy that existed in man's mind against snakes. Some years ago he was entertaining some natives of New Zealand at his his guests had ever seen one
before; but immediately it was produced they drew back, and raised a loud shout of fear, thinking that some harm would befall them. We might be allowed here to suggest that we have, in this dread that man has of snakes, another indirect proof of the truth of Holy Writ-that the "enmity between the seed of woman and the seed of the serpent" exists in reality, and will exist as long as the curse lasts. But to return to the lecture. Mr. Buckland explained the controversy which has been raging, and which has been recorded in Land and Water, about "vipers swallowing their young," and showed a box containing a family of the father and mother and seven little vipers, which he excited great laughter by stating he was doing all in his power to induce to swallow, or be swallowed, though he doubted if they would do it to oblige him, any more than he would swallow a large skin of a boa constrictor, 16 feet long, showing the beautiful markings of the animal. He then passed round a preparation showing the poison glands and fangs of a viper in situ, explaining that when a snake attacks its prey it does not hite, but pricks it, allowing the virus to run down the fang or tooth, which is hollow, into the puncture. A short time since a rattle snake died at the Zoological Gardens, and Mr. Euckland took the rare opportunity thus offered of making experiments to test culiar, the liquid crystallizing very rapidly and throwing out spicula or radiating lines, similar to the coruscations of the aurora borealis and representing most probably the darting given it one day for its dinner, and instead of eating one at a time, as a good rattlesnake would have done, it swallowed both at once and died, and so fell a victim to gluttony and guincapigism." Apropos of the food of snakes, the lecturer #### The Man of Long Life. He has a proper and well proportioned stature, without, however, being too tall. He is rather of the middle size, and somewhat thick set. His complexion is not too florid; at but not too deeply cleft. His foot is rather thick than long not too delicate; his pulse is slow and regular. His stomach is excellent, his appetite good, and his di-gestion easy. The joys of the table are to him of importmerely for the pleasure of eating, but each meal is an hour Animals, on the other hand, have their arms found for of daily festivity; a kind of delight, attended with this ad- > In general, he is somene, loquacious, active, susceptible of joy, love and hope; but insensible to the impressions of hatred, anger and avarice. His passions never become too violent or destructive. If he ever gives way to anger, he experiences rather a useful glow of warmth, an artificial and gentle fever without an overflow of the bile. He is fond also of employment, particularly calm meditation and agreeable speculations, is an optimist, a friend to Nature and domestic AT the Zoölogical Gardens, London, a recent event of some THE BUILDINGS OF THE VIENNA EXPOSITION.—(See page 376.) #### IMPROVED HOT BLAST OVEN. The invention herewith illustrated is an oven for heating the air supplied to blast furnaces. The various portions are constructed with a small weight of metal, and in such a man-ner as to provide against lateral and vertical deflection under a high degree of heat. By suitable means the gases which do not support combustion are allowed to escape, so that the oven may be heated by stone coal or similar fuel. as shown through the broken away wall, immediately above which are perforated metal arches, one of which is repre-sented at C. In the partition, A, are two openings, as at D, provided with dampers and regulated by a lever, E, outside of the side wall. The object of these orifices is to furnish a means of escape for the gases into the empty compartments in rear of the base The upper portion of the oven consists of four metal columns at the corners, which rest upon frame plates. On these columns are cleats, which support the ends of the bars or shelves, F, on which the heating pipes rest. The other extremities of the bars are held up by similar cleats on the middle column, G. Each heating pipe is divided into two narrow branches, which con nect at the ends in single chambers, I. This arrangement is shown in the pipes lying beside the oven, Fig. 1, and also in the sectional views, Figs. 2 and 3. A vertical bar or stay is placed at the middle and between the two branches, so as to keep them firmly in position. The ribs, J, on adjoining tubes, fit closely together so that one pipe affords lateral support to the other. At K, on the upper side of the pipe, are fastened cleats which form a groove or recess running across the top of each tier of pipes when placed in position on the bars. In this groove is shoved a T shaped rail, the upper edge of which comes in contact with the lower sides of the next t'er of pipes above, thus affording a firm support and pre- subject rather than the book, the matter rather than a letter, the truck, because the pressure of the wind upon the venting vertical deflection The inner surfaces of the pipes are corrugated, as in Fig. 3, thus giving a greater heating space and increasing the lateral strength. At the upper side of one end of each pipe is placed a vertical tube, L, which connects with the under side of the similar end of the pipe next above. The pipes in position are shown at H, Fig. 1, and are contained in the two chambers formed by the extension of the partition, A, to the top of the oven. M and N are cast iron chests secured under the frame plate The opening in M serves to admit the air which passes from the chest up through one set of heating pipes and thence to one of the metal boxes, O. Passing through the connecting tube, P, the blast descends through the other system of pipes and thence into the box, N, through the opening, in which it is discharged in a heated condition to the tweer. The arch of the oven is of fire brick with openings in the center, to subject in the simplest manner, let us separate the action of ship, with this exception, namely, that the truck can make allow the passage of smok The advantages claimed for this device may be briefly sta ted as follows: The peculiar shape of the heating metal which affords a large area of heating surface in proportion to the number of joints and weight of iron; the construction of the interior of the heating pipes so that some portion of every cubic inch of air within them is in contact with the heated metal; the facility with which a change of pipes may be effected without stopping the furnace and cooling down; the arrangement for carrying away impure gases and supplying the furnace with pure air, so that the latter can at all times be kept at regular work without change of burden; corrugating the surface of the heating metal, thereby increasing its facility for absorbing heat; the shape of the heating pipes as insuring durability at a high temperature. Patented Sept. 3, 1872. For further information address the inventor, Mr. Jesse Young, Trigg Furnace, Trigg County, #### Drawing as an Educator. In a recent address before the Teacher's Institute, Connecticut Mr. Northrop gave many interesting particulars concerning the comparative progress and condition of education in Europe and this country. He considered that we surpassed Europeans in school architecture; no city in Europe, he said, equaling Hartford in this respect, and in arithmetic, in which our methods of computation are more quick and accurate. Fig. 1 shows the device, with parts broken away to exhibit Yet they may be regarded as in advance of us in the followthe interior arrangements. Fig. 2 is a vertical, and Fig. 3 a horizontal section of a heating tube. The base of the oven is divided transversely by the partition, A, and longitudinally by the partition, B, into compartments. In the regarded as in advance of us in the follow-large and a line partition of schools; 2. Plan of gradation; 3. Culture of the expressive faculties (Aux cicans have a few set words and phrases which are made arrows represent the total effect upon it worth considering here. In the follow-large and a line partition, and the first arrows represent the total effect upon it worth considering here. In the follow-large and a line partition, a set of the second bers in front of partition A are the fire grates and ash pits, con ruity); 4. Independence of text books. They teach the Fig. 2, all the wind is effective upon the sail; in Fig 3, part YOUNG'S HOT BLAST OVEN teaching of history; 6. Mode of teaching modern languages; 7. Drawing. The swiss are in advance of all other countries in this art. To this their general prosperity was owing. Hemmed in among the mountains, they own their own houses and are more prosperous than many other countries with better advantages. England pays five times as much for pauperism as for education, while Swizerland pays seven times as much for education as for crime. Drawing has chiefly made this difference. Mr. Northrop urgently counselled all the teachers to teach every one of his or her scholars drawing, even if they had to neglect other studies. ## HOW A VESSEL SAILS AGAINST THE WIND. her Majesty's service, who is well known as a sailor and a writer on seamanship, says Naval Science, to explain in a popular manner, and for the benefit of unscientific seamen, why it is that a ship is able to sail close to the wind and thus travel in a direction which is apparently opposed to the action of the force which is moving her. He says that, although most persons accustomed to the sea are aware of the fact, they are perfectly unable to comprehend it; and the scientific explanation by means of the resolution of forces does not help them out of their difficulty at all. This phenomenon is repeated many times in the day within the experience of numbers of seamen and people who live near the sea, and to some minds the observation of a constant repetition of this unaccountable circumstance becomes positively
irritating. After such good reason being shown, we cannot refuse what little assistance we may be able to give towards clearing up this mystery, and shall proceed to give an illustration that we think may enable the action of the wind upon a ship when she is sailing to windward to be understood. In considering this the wind always blows across the page from left to right, principles apply to the ship as to the truck. For example, as in the direction of the horizontal arrow in Fig. 9. And let us, for the sake of simplicity, consider the case of a single sail upon a mast. Now, we shall take it for granted that every seafaring man will admit three things: 1st, that the wind, blowing steadily in one direction, will not press upon the sail the sail is set in any other position, the wind will press more or less upon it; 3rd, that the wind will press most upon the sail when it is set across the wind, and that it will press less and less upon it as the sail is turned away from this position. For instance, with the wind blowing steadily as arranged (across the page from left to right), if we set the sail as in Fig. 1, the wind will not press on it at all; if we set it as in Fig. 2, the wind will press upon it with its full force; if we set the case and that of the railway truck is that, while the ship is sail as in Fig. 3, the wind will still press upon it, but will press with very little force indeed. Let us draw thick arrows to represent the pressures of the wind on the sail in these different positions; that in Fig. 2 shall represent the full force of the wind on our little sail when set right across the wind, and the others shall get shorter and shorter as the sail is turned more and more away from the wind, and as the force consequently decreases. In Fig. 1 there is no arrow at all, because the wind does not press on the sail at of the wind's force is lost by slipping past the sail, so to speak; in Fig. 4. more of its force is lost in this way, but there is still a considerable pressure exerted against the sail; but in Fig. 5, nearly all the force, and in Fig. 1, quite all the force, is lost. But what we wish to impress is that the sail in Fig. 4, for example, is acted upon just as if a lighter wind than that actually blowing across the page were blowing in the direction of the arrow; and similarly in all cases, and under all circumstances, a wind blowing in one direction will act upon a sail which is inclined to it, just as a lighter wind blowing directly against it Let us now hoist our little sail upon a light railway truck, and place this truck upon a railway lying diagonally across the wind's path, as shown in Fig. 6. Here the sail is set in the same position as it is in Fig. 2, and the effect of the wind upon it will obviously be to propel the truck down the railway in the direc-tion of the small arrow. It is also clear that if we set the sail in the truck in the position shown in Fig. 3, the effect of the wind would still be to drive the truck in the same direction (down the rails), but it would go more slowly, because, as we have seen, the force acting on the sail in Fig. 3 is less than that acting in Fig. 2. But supposing we now set the sail on the truck so that the sail stands along the truck, parallel to the line of rails, as in Fig. 7, we shall get no motion of and their teaching is more conversational; 5. More thorough sail will now be exactly across the railway, and the sail will be pressing the truck in that direction. The truck will not be forced either up the rails or down the rails, but across them only, and therefore no motion will ensue. Let us now turn the sail still more away from the wind, and set it upon the truck in the position shown in Fig. 5. The wind as we have seen, will press upon the sail, but with very reduced force. This case is represented in Fig. 8. Now we here see (Fig. 8) that although the wind is still blowing across the page, the effect of it is to press the sail almost directly up the page, and it is easy to see that the effect of the sail will be to propel the truck up the railway in the direction of the small arrow. Here, then, we have a railway truck literally sailing up to windward, because while the wind is blowing in the direction of the one arrow the truck We have been asked by a naval officer of high standing in | is moving in the direction of the other; see Fig. 9. Now this railway truck illustrates very fairly the case of a ind upon the sail from the action of the sail upon the no leeway; the rails prevent this. But a ship can and does ship, and treat of each independently. Let us first consider make leeway, and therefore cannot sail so near to the wind the action of the wind upon the sail, and let us suppose that as the truck. It is obvious, however, that the same general let us take the case of the sail shown in Fig. 3, and set it upon a ship, as in Fig. 10; it is clear that the ship will sail away easily enough in the direction of the small arrow, which is at right angles, or square, to the direction of the wind, which we still suppose to blow across the page, but at all if the sail is set with the edge to the wind; 2d, that if which takes effect upon the sail in the direction of the other arrow. Or, let us take the case of the sail set as in Fig. 4, and set it similarly upon our little ship, the wind taking effect as in Fig. 11. Is it not obvious that, just in the same way, and for the same reason, as the railway truck in Fig. 8 was driven up the line, so in the present case, Fig. 11, the ship will be driven in the direction of the small arrow, which is manifestly to windward? The only difference between this driven ahead, it will also be driven somewhat to leeward, tionality, and Austria's sections are already decorated. There the amount of the ship's progress to windward. #### ATHE BUILDINGS OF THE VIENNA EXPOSITION. good an idea of the magnitude and splendor of the prepara- color, with gilt figures terminating in a scroll work and capnube, while on the other runs the Danube canal-a portion Austellung, the German for World's Fair). Most of the winrates the Park from the city, so that the Exhibition will lie in of the rotunda supports raised and fastened in position. and through the Park from end to end. The grounds have down before the cold weather sets in. been beautifully laid out, sheets of water added, buildings removed, and every resource of ornamental architecture and landscape gardening lavished in their decoration. The central rotunda, with its conical roof, occupies the most prominent position in the view presented. This building will be filled with the choicest objects of the trophy character that the exhibiting nationalities can supply, and will doubtless present a coup d'ail of surpassing grandeur. munity. The writer commences with the following trite ital from a few persons in small sums, than a large amount It springs from the ground, a circular façade of piers of no less than 4261 feet in diameter, with Roman-Doric columns at either side, and connecting arches filled with glass. Within this is a gallery fifty feet wide, covered with its own roof, while above rises the great areaded circuit. The large lantern seen above the roof is 105 feet in diameter, and is surmounted by a second lantern and cupola fully 300 feet above the ground. The rotunda stands in the middle of the grand practical operation quadrangle, which is 755 feet square. The vast central gallery or spine is 2,985 feet long, and the vista from end to end will probably be as much as even the condition of a Viennese summer atmosphere will enable the unassisted eye to discern objects clearly through. The width of this great hall is 82 feet, and its hight from floor to wall plate 524 feet, and dispose of part of them; but the powers and privileges The cross galleries are 250 feet in clear length by 49 feet in width; the open spaces between them will be laid out as gar. gages. Unquestionably, the preferable mode is for the patdens, in accordance with the taste and styles of the various nationalities to which they will appertain. The great picture gallery occupying a position to the southwest of the requisite capital and knowledge of the trade, he can intromain building, and quite detached from it, with a length exceeding 700 feet, will probably, while it consists, be the most magnificent fine art collection in the world. The machinery annexe is a substantial brick building, shown in our illustration to the rear of and parallel to the central gallery. It is intended to be permanent, and after manufacture his patented articles without extraneous assistthe Exposition will be used for mercantile purposes in relation to the adjoining Danube quay. The extreme length is 2,614 feet, and the width nearly 155 feet in the clear. The side walls consist of brick piers, running up to the roof, with segment arching between, at a level to suit the side buildings. Ample means of lighting and ventilation are provided. Boiler houses are constructed at various points along the length of the building, and steam and water introduced from end to end. Down the gangways, at the sides of the central span, are to be laid lines of rails of the ordinary gage, so that exhibits can be brought right into the building on the railway trucks, lifted from the latter by traveling cranes, and deposited in their places. Altogether the arrangements of this portion of the Exposition are admirably planned, and the view which will be presented from the gallery-a range of machinery in motion extending for nearly half a milewill be something which has never been previously wit- Directly on the northeast side of the machinery building will come in the terminus of the North Austrian railway, and by proper sidings, etc., with a complete system of turntables, immediate connection will be obtained, not only with the rails within the building, but with nine other lines of way, each extending the whole length of the exhibition.
Exhibitors will thus be enabled to bring their goods, without the risk of unloading, right up to the specified localities. The thirty-two transverse galleries are destined for the reception of the lighter articles of industry, and the assignment of divisions to the different nations corresponds to their geographical situation, the extreme eastern division being given to India and that furthest west to America. Opposite the south end is a series of buildings for the use of the Sultan. West of this a large and fine building, in the stickers keep their carriages as they do now. style of architecture, for the dwelling of the Vice roy, is in process of erection. In different places about the grounds are small buildings for fire apparatus, and barracks are being erected for the quarters of the troops stationed as The work on the buildings and grounds began last February, and has progressed as fast as the labor of six thousand hands could make it. The Austrian method of working is exceedingly slow and, from the description of the correspondent of the Boston Globe, according to our ideas, rather com ical. It is stated, as an example, that a number of piles had to be driven, on account of the bad quality of the ground; instead of putting on an engine and driving the pile, a tripod is rigged with pulleys at the top, from which some thirty curs when a patentee is enabled to inaugurate the comropes radiate. These thirty ropes are grasped by thirty men, and the weight pulled up a little way; then all hands let go. The weight falls, and they begin again, so that thirty men take three hours to do what Yankees would do in ten minutes. Labor, however, in Austria is so cheap that money is actually saved by the adoption of this shiftless method. Each gallery will have, on the outside, the arms of its na- will be assuredly repaid by the notices which will follow. which the truck was not; but this consideration only affects still remains very much to be done in the interior, but in the eastern half of the Haupt gallery the flooring is already laid, and in the Austrian section the interior decoration is well under way, and is very pretty. Columns, a few feet apart, throughout the entire distance of the small galleries, extend The bird's eye view herewith presented, of the vast build- from the bottom to the top. The base is square, of the color ing now in process of erection in Vienna, will convey as of oxidized silver, and upon this a round column, of a red tions for the World's Fair of 1873 as is possible in so small ping of silver. Upon each of these columns is a staff bearing a space. The site chosen is the Imperial Park or Prater, the Austrian Eagles all very heavily gilded, while in the cenalong one side of which extends the new channel of the Da- ter is a bronze wreath, in which are the letters W. A. (Weltof which is seen at the right of our illustration-which sepa- dows have been put in, and the east wing glazed, and several convenient propinquity. Great avenues, to permit of ample It is hoped to have the building quite finished and ready access and circulation, have been made, the principal of for the reception of articles by the middle of February, 1873, which, the Haupt-Allee, extends in front of the buildings, and it is expected that the outside staging will all be taken #### HOW TO MAKE MONEY BY PATENTS. Charles Barlow, patent solicitor, London, England, has recently issued a pamphlet with the above title, designed to inventions, it is a good plan to divide the patent into shares give patentees useful hints and suggestions how to render of, say, eight, sixteen, or thirty-two; the owner retains a inventions profitable to the patentee and useful to the com- quarter or half share and finds less difficulty in raising capremark, which is as applicable to our inventors as to the from one or two. These shareholders, or joint proprietors, English patentees to whom it is specially addressed: that the inventions for which they are taken should be new worked by the patentee, or from licenses, or from the sale of and useful, that the patent and specification should correctly the privilege. In this manner those much envied and sought describe and ascertain the nature of the discovery, and then for individuals, called capitalists, are induced to invest their that the patentee should judiciously put the invention into spare funds in aid of poor inventors, to mutual advantage. There may be said to be four ways of commonly dealing with a patent. The first mode is for the patentee himself to put the invention into practical operation; the second plan is grant licenses for its use; the third is to dispose of the whole right; and the fourth is to divide the right into shares, of the grant permit of a variety of dealings, including mortentee himself, if possible, to initiate the practical introduction of the invention into the market. If he possesses the duce it more advantageously to public notice than any other person, because he can best combat the difficulties which are likely to spring up, and soften down the asperities which generally are excited by the appearance of a new competitor for public favor. Fortunate is the patentee who is able to ance,-who can appeal to the public at large, who, in the long run, adopt whatever is practically useful. Not a few novices in patents fall into the error of demanding exorbitant prices for their merchandise: they assert that there would be little advantage in a patent did it not enable the owner to gain high profits. Certainly a higher profit than is usually made in trade is due to the patentee who is taxed for his privilege, and who has to incur heavy expenses in experiments, models, and trials. But sound policy will dictate moderation, and the patentee will find it to his real interest to cultivate an extensive trade at fair and reasonable prices. The effect of placing too high a price upon the articles is to prevent trial of them, and it should be the object of the patentee to promote by all means in his power a speedy demand. ## NOVEL MODE OF EXCITING A DEMAND. In general it will be necessary for the patentee to stimulate demand. When Day and Martin first introduced liquid blacking, they hired a number of men, and equipped them in the garb of livery servants. These men were continually asking the apathetic shopkeepers for the celebrated liquid blacking, and would purchase no substitute. When tradesmen found, as they thought, that the nobility and gentry required the article, they gave orders for it, and when they of a nominal royalty, to commence manufacturing, and if kept it in stock, they recommended its use, and so the compound came at last into general use. The more feasible, and certainly more commendable plan now, is to gain publicity by advertising. At the time when and this time after time, until some tangible result follows Day & Martin commenced, advertising was considered disreputable; tradesmen were not then accustomed to expend two out his invention will not fail to visit personally the largest or three thousand pounds in placards, or five or six thousand manufacturing houses, and in general will not visit them in per annum in advertising in newspapers; neither did bill- vain. Although he may be a stranger and unacquainted In these times advertising is all powerful, and the patentee must not fail in this respect. In addition to direct advertising, which, to be permanently beneficial, must be systematically and constantly adopted, the author then proceeds to name the different journals in this country. They literally come, and see, and conquer devoted to mechanics, mining, engineering, building, etc., all difficulties. They usually come well primed. They bring published in London, in which he recommends patentees to with them machines that will work, or a dozen rifles which advertise and have their inventions illustrated, selecting will shoot with accuracy. They proceed to visit the center such papers as relate most intimately to his invention. #### PUBLIC EXHIBITION. A favorable opportunity of obtaining wide publicity oc mencement of his operations by a public exhibition or experimental trial, to which he invites the reporters of the press. LICENSES. There is a large class, however, who cannot themselves bring out their invextions, and who, consequently, sell the whole or a portion of their rights, or seek for purchasers of licences. In most of the staple manufactures, such as iron smelting, steel making, sugar refining, cotton, wool, and flax spinning and weaving, larger returns will be obtained by granting licenses than by a sale to any one firm. Licen ses under letters patent may be exclusive, perpetual, limited, and general. An exclusive license amounts almost to a cession of the patent, and ought only to be granted under terms nearly equivalent to its purchase. Where a royalty is covenanted to be paid, a stipulation should be made for a fixed minimum amount per annum, otherwise the licensee can only be held liable to pay on the actual manufacture, and he may think proper to cease manufacturing. Probably all license deeds reserving royalties should contain a stipulation as to net amount of royalty to be paid annually, and in default of payment of that sum that the license should revert to the patentee. #### STOCK COMPANIES. As a means of obtaining capital for the development of acquire no right to work the patent; they simply receive To render patents profitable to their owners, it is requisite their share of any profit which may arise from its being #### SEARCH FOR CAPITAL. Capital will not in general go in search of the inventor; he must therefore go in search of capital. Whatever is good, or valuable, or excellent, must be sought for early and late, in season and out of season, and the inventor who seeks capital must gird up his loins and vigorously set out on his search. Before doing so, he should provide himself with the best made model or specimen which his means will
allow. Inventors often fall into error in this respect. They content themselves with an ill constructed, clumsy, defective model, of the most crude and paltry order, or exhibit imperfect samples which show defects rather than advantages. If to this be added a dirty drawing and a written prospectus, the picture of the equipment of many inventors for their journey in search of capital will be complete. With this drawing under the arm, and a unique model or specimen in the pocket, they journey on sometimes for months, and sometimes for years, and seldom without accomplishing their object in the long run, although by better management they might considerably shorten the term of their pilgrimage. They seem to have but one idea, and that is to benefit the world by the introduction of their invention, until which event occurs mankind, in their opinion, will remain in a state of semi-barbarism. They would, however, greatly facilitate the acquisition of their desires by devoting more attention to the preparation of whatever may be neces sary to induce men to form a favorable opinion of the inven- A pleasing model, correct in detail, made to scale, and well finished, serves to persuade and to silence objection; and if drawings are shown, they should be neat, and the prospectus or description always printed. When it is sought to interest some person with capital at command to take a share with a view to putting the invention into operation, or to enable a patent to be procured, the search may be made in any direction. Perhaps the least likely to aid are those connected in any way with the trade affected by the subject matter of the invention. #### GETTING IN THE FIRST WEDGE The first object should be to induce some one, on payment the results are satisfactory, the area of operations may be readily extended. The trade should be addressed and can vassed personally if possible, or by a fitting representative; The patentee who is intent upon and determines to carry with the details of the trade, if he possesses a clear head and a practical invention, he will meet with courteous attention, #### HOW AMERICANS DO IT. The author has frequently witnessed the successful manner in which American patentees dispose of their inventions of the trade they wish to deal with, and by perseverance, energy, and tact, they succeed in accomplishing their object. Cannot Englishmen follow their example ? How few do! ## PHILANTHROPIC ASSOCIATIONS. At any time within the last twenty years there has been in existence some society or association professing to be animat-After showing them over his works, and exhibiting to them mated by the most philanthropic sentiments towards inventspecimens of his new manufacture, he should supply the ors. It is true such societies have sprung up like mushreporters with a printed statement of the nature of the mat- rooms, and have generally as quickly withered; but, generter, and then conduct them to a suitable entertainment. He ally speaking, some such affair is before the public, making a great parade of its efforts to aid inventors and to ameliorate their hardships. Under the guise of philanthropy, the object of most of these associations has been to carry on the business of patent agency with a view to their own individual benefit. Of fair competition no one has a right to complain; but that species of hypocrisy which masks itself under the name of philanthropy, while it seeks only self-aggrandizement, ought to be denounced and exposed; and inventors may rest assured that no society ever existed, or does exist, which was or is capable of benefitting them in the slightest degree. And inventors will best consult their interests by avoiding dealings with philanthropic patriots who would fain the object of most of these associations has been to carry on the trees in the vicinity held shreds of clothing and little bits of flesh. They were actually blown to atoms, and not a piece of flesh an inch long could be discovered. On the hillside a watch belonging to Mr. Wright was found battered up and their immediate predecessors have been engaged in the manufacture and sale of this class of goods for many years, during which the business has grown to considerate watch belonging to Mr. Wright was found battered up and and boys' shirts. The parties are both of them shirt manufacturers, selling their goods in the general market. The plaintiffs and their immediate predecessors have been engaged in the manufacture and sale of this class of goods for many years, during which the business has grown to considerate watch belonging to Mr. Wright was found battered up and their immediate predecessors have been engaged in the manufacture and sale of this class of goods for many years, during which the business has grown to considerate watch belonging to Mr. Wright was found battered up and their immediate predecessors have been engaged in the manufacture and sale of this class of goods for many years, during which the business has grown to considerate watch belonging to Mr. Wright was found bettered up and their immediate predecessors have been engaged in the manufacture and the name of philanthropy, while it seeks only self-aggrandizement, ought to be denounced and exposed; and inventors may rest assured that no society ever existed, or does exist, which was or is capable of benefitting them in the slightest degree. And inventors will best consult their interests by avoiding dealings with philanthropic patriots who would fain use inventors in the same manner that the monkey used the sealed the fence, leaving the peaks of which stood out from of granting patents, and thinks that all patents should be evitable explosion blew the two perpetrators of the mischief granted for a longer period. term of 17 years. This is the term which Congress a few said to have loudly condemned the owner for leaving the danyears ago enacted that United States patents should enjoy, However good and valuable an invention may be, there is, sibly occur! and generally speaking almost always must be, considerable difficulty in introducing it. Its initiatory stage is seldom profitable; and in the remaining years of the 14, there is oftentimes not time enough to permit the owner to recoup his expenses, to say nothing of remunerating himself for years of labor and anxiety. One of the first patents taken in this country for sewing machines remained dormant for seven years, because there was no demand for the article; it was in advance of the times, and numberless instances might be quoted where similar delay has occurred. The copyright of a book or a play or a piece of music extends during the lifetime of the author, and for some years after his decease; does it seem too much to ask for 17 years copyright of a new locomotive, or loom, or propeller, or electric telegraph? If any country in the world can afford to be generous as well as just to inventors, it surely is this, which enjoys unparalleled prosperity, due in a great measure to the efforts of inventive genius. #### NEW FIREPROOF CONSTRUCTION. The Building News publishes the following description of an invention in which iron or steel, hollow earthenware and concrete or cement are the materials employed in combina-The walls, partitions, floors and roofs are constructed of cells of metal in which are placed earthenware pipes, the sides of which are splayed outward at the base to form a skewback. The pipes and iron flitches are bolted together so as to constitute composite girders. Between each skewback, an earthenware hollow pipe with oval shaped head and flat soffit, channeled and indented to receive the plaster of ceiling, is placed, with sufficient room left between the composite girders to receive a charge of cement concrete. The upper surface of the floor is leveled and covered with strong cement grout. Holes are left in the soffits of the hollow pipes for ventilation, and the pipes themselves may be utilized to convey warm air through the building. In walls and partitions, the iron and steel lengths are placed in a vertical, in floors, in a horizontal, and in roofs in an angular position. In partitions, wire is used instead of lath to receive the concrete and plaster. The proportions of the concrete are six parts of broken brick, slag and sand, and one of cement, well mixed. The floors are made in one body and not in layers. This method is said to be cheap, to require no skilled labor to construct, to furnish thorough ventilation, and to require comparatively no repairs. #### The Hartford Steam Boiler Inspection and Insurance Company. The Hartford Steam Boiler Inspection and Insurance Company makes the following report of its inspections in the month of September, 1872: During the month, there were 988 visits of inspection, by which 1,990 boilers were inspected-1,929 externally, and 500 internally-157 were tested by hydraulic pressure. The defects in all discovered were 1,020, of which 292 were regarded as dangerous. These defects were as follows: Furnaces out of shape, 42-9 dangerous; fractures in all, 110-53 dangerous; burned plates, 61-25 dangerous; blistered plates, 103-15 dangerous; cases of sediment and deposit, 196-9 dangerous; incrustation and scale, 191-10 dangerous; external corrosion, 70-29 dangerous; internal corrosion, 25-6 dangerous; internal grooving, 7-3 dangerous; water gages defective, 60-18 dangerous; blow-out defective, 26-24 dangerous; safety valves overloaded, 34-19 dangerous; pressure gages defective, 119-22 dangerous; varying ous; pressure gages defective, 119—22 dangerous; varying from —5 to+20. Boilers without gages, 13—all dangerous, as they were being used at high pressure; deficiency of water, 3—2 dangerous; broken braces and stays, 40—29 of these cases left the boilers in unsafe condition; boilers condemned, 12. whatever can, by any possibility, be prejudiced, as, if the averments of the applicants and that testimony of their exceptions of the averments of the applicants
and that the testimony of their exceptions of the averments of the applicants and that the testimony of their exceptions of the averments of the applicants and that the testimony of their exceptions of the averments of the applicants and that the testimony of their exceptions of the averments of the applicants and that the averaged of the averments of the applicants and the testimony of their exceptions. The Force of Nitro-Glycerin. The torpedoes of Roberts & Co., used in the oil regions for enlarging and opening the bottoms of oil wells, are charged with nitro-glycerin, and the works for the manufacture of the applicants will be the only losers, while the public interests will have afforded. If, however, the plan shall hereafter prove a failure, the applicants will be the only losers, while the public interests will have afforded. If, however, the plan shall hereafter prove a failure, the applicants will be the only losers, while the public interests will have afforded. If, however, the plan shall hereafter prove a failure, the applicants will be the only losers, while the public interests will have afforded. If, however, the plan shall hereafter prove a failure, the applicants will be the only losers, while the public interests will have afforded. If, however, the plan shall hereafter prove a failure, the applicants will be the only losers, while the public interests will have afforded. If, however, the plan shall hereafter prove a failure, the applicants will be the only losers, while the public interests will have afforded. If however, the plan shall hereafter prove a failure, the applicants will be the only losers, while the public interests will have afforded. If however, the plan shall hereafter prove a failure, the applicants will be the only losers, while the public interests will have afforded. If however, the plan shall hereafter The author discusses in his pamphlet the English system the lids of the boxes in which they were enclosed. The in-Lastly: All patents should in future be granted for the severely injured. Some of the inhabitants of Yonkers are and orang-outang-were, he said, only our cousins, and there was some satisfaction that these ugly animals were not our ancestors. But there was no doubt that they descended from the same ancestor who was the forefather of man. The origin of man must be looked for in a tropical region, probably Southern Asia or Africa, during the tertiary period. There is a theory that between Southern Asia and Africa there existed a now sunken continent, called Lamuria, of which there are traces in the numerous islands, where, ac cording to some authors, the origin of man was placed. The ancestor of man was described as a hairy, long headed animal, with long arms and short legs, which, by the development of the brain and its moral attributes, resulted in the development of man. If the origin of man is placed in the tertiary period, the time of the origin of man must be traced back hundreds of thousands of years. #### PATENT OFFICE DECISIONS. #### The Cigar Ship Patent Extended. The Cigar Ship Patent Extended. In the matter of the application of Ross and Thomas Winans for extension of patent No. 21,917, for improvement in hulls of steam vessels, granted October 26, 1868, the Acting Commissioner Thacher has granted the extension. The Examiner gives the following interesting particulars: This application relates to a novelty in ship building, the announcement of which was a sensation, and the development of which has excited a widely-extended public interest. It has been generally known as the "cigar ship," and the experiments testing its practicability, which have been made from time to time in this country and Europe, have been attentively watched by great numbers on both continents. The report of the Examiner in the case is as follows: This invention consists in a hull for vessels complete in itself, whose cross-section at any point shall be a perfect circle, and whose longitudinal section is formed of segments of a circle, making the form of the hull that of an elongated spindle, for the purpose of diminishing the usual variation of resistance common to vessels of irregular configuration, by which the same are caused to roll, and also to diminish the resistance of a vessel of given tonnage in passing or being propelled through the water, while at the same time increased strength is obtained. The invention appears upon careful examination to have been new at the time the patent was granted, and the testimony of eminent experts indicates that it is valuable and important to the public. In any case the applicants have shown their own faith in the ultimate success of their attempt to promote the effi- portant to the public. In any case the applicants have shown their own faith in the ultimate success of their attempt to promote the efficiency of ocean steam navigation by continuous and persistent efforts extending through the life of their patent, and by an expenditure during that time of over a million dollars in The importance and value to the public—although the amount in money is not calculated or approximately estimated—may, without doubt, be considered established, to what extent, however, is left entirely to conjecture; but the enormous outlay and uniform testimony of the experts as to the results obtained indicate that the value is very great, and will be commensurate with the difficulties and expenses already incurred. The applicants show an expenditure of more than a million The applicants show an expenditure of more than a million of dollars without any returns whatever. They, therefore, have not been adequately remunerated notwithstanding they have been unusually diligent, having been almost constantly engaged in the construction of vessels upon their plan during companions, they were out walking and came upon a fenced inclosure, inscribed "Danger," "Nitro-Giycerin," etc. They scaled the fence, leaving the other two behind, and threw large stones at the cans, the necks of which stood out from the lids of the boxes in which they were enclosed. The inevitable explosion blew the two perpetrators of the mischief to atoms, the two other boys, who got behind trees, being severely injured. Some of the inhabitants of Yonkers are gaid to have loudly condemned the owner for leaving the dangerous substance in a place where a catastrophe could possibly occur! The Origin of Man. Dr. Ludwig Buechner, the German naturalist, lately delivered a lecture in this city on the Origin of Man, in connection with the theory of the origin and development of life. After explaining the Darwinian theory of the origin of life, the lecturer characterized the hypothesis that man is a descendant of the monkey and the ape as absurd. The higher classes of monkeydom—the gorilla, the chimpanzee and orang-outang—were, he said, only our cousins, and there States. The defendants have clearly infringed this right by using the words and device of the plaintiffs, both in the exact form, and in such near resemblance as is calculated to deceive. They have done this by so marking the shirts made by them, and by the labels used on their packages and packing boxes. A perpetual injunction must, therefore, issue, restraining them from any use of this trade mark, either in the identical form in which it is registered in the Patent Office, or in any form in which it may be calculated to deceive by confounding the goods manufactured and sold by the plaintiffs with shirts made and sold by the defendants. C. G. Child, for complainants. C. E. Perkins, for defendants. # United States Circuit Court, Southern District of New York. MEISSNER et al vs. THE DEFOE MANUFACTURING COMPANY. MEISSNER et al. 18. THE DEFOE MANUFACTURING COMPANY. This was a suit in equity on the patent granted to Albin Warth, April 17, 1870, for an improvement in stop valves for petroleum packages. The complainants were Frederick and Charles F. L. Meissner and Charles F. Ackermann, constituting the firm of Melssner, Ackermann & Co., and Albin Warth, the inventor; and the defendant was the Devoe Manufacturing Company. The claims of the patent were as follows: 1. The cup-shaped disk suspended within the package A, receiving the screw b, and forming a valve seat in combination with the valve g suspended from the screw between guides h, substantially as and for the purpose described. 2. The vent hole c and discharge opening d, in the cup-shaped disk, in combination with the central screw and with the valve and the guide arms, all constructed and operating substantially as described. I deem it highly probable that the stop valve made by the defendant, when considered in reference to its construction and its office and function of a mere stop valve, is substantially like that described in complainants' patent, and that if the latter had been described and claimed by the patentee independently of the precise form and location of the parts and of the material office or function which such precise form and location performs in the combination described, the stop valve of the defendant must have been declared an infringe ment. But the patentee has seen fit by his specification and claim ment. But the patentee has seen fit by his specification and claim to confine the right secured to him within much narrower limits. He does not in his specification claim that either part used in the construction of his stop valve is new, nor that any number of the parts, not including a cup-shaped disk by means of which the whole apparatus is sunk below the outer surface of the oil can, are new in their combination with each The defendant does not use the parts in the same form or in an equivalent form, and does not produce the same result. The change he has made in the form of the disk constituting the valve seat is such as necessarily defeats the purpose for which the complainants' device was intended and which it accomplishes. The defendant's disk is, therefore, not
an equivalent to that used by the plaintiffs—it has not the same effective operation. Instead of suspending the stop valve below the surface of the can or vessel by its convex form, it rises, necessarily, above that surface, and carries still higher the parts with which it is connected, thus doing the very thing which the complainants, by the peculiar form of their disk or valve seat, profess to avoid and do avoid. The conclusion cannot be escaped by saying that the difference is not in the material or essential characteristics of the device, but only in the degree of utility, that the defendant's device is the same in principle and in substantial structure, but by a change in the form of the valve seat, by inverting it, the device is rendered less perfect and less useful. Under a specification and claim which might readily be suggested, this reasoning might be entirely just and true, and might render it necessary to pronounce the defendant's device as infrincement. But the actual claim cannot be review as infrincement. The defendant does not use the parts in the same form or valve are not changes in the principle or in the manner of operation which would relieve their stop valve from condemnation as an infringement; they are a more substitution of equivalents. For this reason it seems not improbable that the conclusion to which I am compelled is not because the actual invention of the complainants has not been infringed or copied by the defendant, but because the specification and claim upon which the patent is granted has so narrowed the ground on which they stand that they fail to realize all the monopoly to which, in virtue of the actual invention, the patentee may have been entitled. If this be so, the Court is nevertheless unable to relieve them. We can only deal with the rights of the complainants as they are defined in and secured by the letters patent; and, as thus defined, my conclusion is that the defendant's stop valve is not an infringement. The manner of operation which would relieve them. We can only deal with the patent of the actual invention of the complainants as they are defined in and secured by the letters patent; and, as thus defined, my conclusion is that the defendant's stop valve is not an infringement; they are a more substitution of equivalents. For this reason it seems engine and force the steam into a rotary boiler for paper manufacture, creating a pressure of one humanical wasterials of all kinds. Goodnow & Wightman, 25 Cornhill, Boston, Mass. Machinists; Illustrated Catalogue of all kinds of small Tools and Materials of all kinds of small Tools and Materials of all kinds. Goodnow & Wightman, 25 Cornhill, Boston, Mass. Machinists; Illustrated Price List free. Also Materials of all kinds of small Tools and Materials of all kinds of small Tools and Materials of all kinds. Goodnow & Wightman, 25 Cornhill, Boston, Mass. Machinists; Illustrated Catalogue of all kinds of small Tools and Materials of all kinds of small Tools and Mat The bill of complaint must, therefore be dismissed with J. Van Santroord, for complainants. G. Gifford, for defendants. THE NOVEMBER METEORS.—Between seven and eight hun dred meteors were observed in the course of five hours, on the evening of November 27, at the Observatory of Vassar College, Poughkeepsie, N. Y. Facts for the Ladies.—Mrs. Paschol, New Middleton, Tenn., has a Wheeler & Wilson Lock-Stitch Machine in use since 1838; it has run constantly without repairs; has 10 of the original 12 needles. Other kinds of machines wear out in a few years; she has never seen a Wheeler & Wilson n out. In 1967, she earned \$317.73, besides doing the sewing for her family Improvements and Woods' Lock-Stitch Ripper. ## Business and Personal. The Charge for Insertion under this head is One Dollar a Line. If the Notice exceed Flour Lines, One Dollar and a Half per Line will be charge Ross Bro's Paint and Grain Mills, Williamsburgh, N Wanted-Nail Keg Heading Turner. Manufacturers, send Illustrated circulars and prices to William Brown, "Pioneer Steam Keg Works," St. Louis, Mo. Male and Female Agents Wanted-100 per Cent. Profit. dress, with Stamp, for particulars, P. O. Drawer 217, Buffalo, N. Y. For Steel and Iron Set Screws, send to Reynolds & Co. for Price List, New Haven, Ct. For Sale, two Patents. Address H. S. Ball, Spartanburg, S.C. Dobson's Patent Scroll Saws make 1100 strokes per minute. Satisfaction guaranteed. John B. Schenck's Sons, 118 Liberty St., N. Y. Permanent Photograph Printing, just what is wanted by Mannfacturers. Send for Circular and specimens to Amer. Photo Relief Printing Co., 1002 Arch St. Philadelphia, Pa. John Carbutt, Sup't. Millstone Dressing Diamond Machine-Simple, effective, durable. For description of the above, see Scientific American, Nov. 27th, 1889. Also, Glazier's Diamonds. John Dickinson, 64 Nassau St., New York. Agricultural Implements and Machines for Fall and Winter se. R. H. Allen & Co., 189 & 191 Water Street, New York. Valuable Patent Right for Sale. The amusing Toy Attachment for Planos, illustrated in SCIENTIFIC AMERICAN, October 28th, 1871. Address G. L. Wild & Bro., 420 11th St., Washington, D. C. Boston Fire! Goodnow & Wightman, 23 Cornhill, were not burned out, and are ready to fill all orders for Tools and Materials. Catalogues were all burned, but will have more in about two weeks. First Class Steam and Vacuum Gauges, Engine Registers, Davis' Recording Gauges. New York Steam Gauge Co.,46 Cortlandt St., N.Y. Kahnweiler's Cotton Seed Huller, \$175. Is warranted perfect in its operation. Send stamp for circular to R. H. Allen & Co., New York, manufacturers and dealers in Agricultural Machinery of every kind. Four Brick Machines, Combined with Steam Power (Winn' patent), makes 40 M. per day, for sale at a bargain. Address the manufacturers, John Cooper and Co., Mount Vernon, Ohio. guisher. F. W. Farwell, Secretary, 407 Broadway, New York. Hydraulic Jacks and Presses-Second Hand Plug Tobacco Machinery. Address E. Lyon, 470 Grand St., New York. Steam Boiler and Pipe Covering-Economy, Safety, and Durability. Saves from ten to twenty per cent. Chaimers Spence Company, foot East 9th Street, New York—1202 N. 2d Street, St. Louis. Steel Castings "To Pattern," from ten pounds upward, can be forged and tempered. Address Collins & Co., No. 212 Water St., N. Y. Heydrick's Traction Engine and Steam Plow, capable of ascending grades of 1 foot in 8 with perfect case. The Patent Right for the Southern States for sale. Address W.H.H. Heydrick, Chestnut Hill, Phila. J. A. S., of Ohio, says:—Will you please inform me how The Berryman Steam Trap excels all others. The best is always the cheapest. Address I. B. Davis & Co., Hartford, Conn Peck's Patent Drop Press. Milo Peck & Co., New Haven, Ct. Wanted-Copper, Brass, Tea Lead, and Turnings from all parts of the United States and Canada. Duplaine & Reeves, 700 South Broad Street, Philadelphia, Pa. The Berryman Heater and Regulator for Steam Boilers-No T. R. Bailey & Vail, Lockport, N. Y., Manf. Gauge Lathes. For 2, 4, 6 & 8 H.P. Engines, address Twiss Bro., New Haven, Ct. The Berryman Manuf. Co. make a specialty of the economy and safety in working Steam Boilers. L. B. Davis & Co., Hartford, Conn Williamson's Road Steamer and Steam Plow, with Rubber Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1509. Belting as is Belting-Best Philadelphia Oak Tanned. C. W. Arny, 301 and 308 Cherry Street, Philadelphia, Pa. Boynton's Lightning Saws. The genuine \$500 challenge Will cut five times as fast as an ax. A six foot cross cut and buck saw, \$6 E. M. Boynton, 80 Beckman Street, New York, Sole Proprietor. For Steam Fire Engines, address R. J. Gould, Newark, N. J. Brown's Coalyard Quarry & Contractors' Apparatus for hoisting and conveying material by fron cable. W.D. Andrews & Bro.414 Water st. N.Y. For Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron Mills, Pitfsburgh, Pa., for lithograph, etc. All kinds of Presses and Dies. Bliss & Williams, successors to Mays & Bliss, 118 to 122 Plymouth St., Brooklyn. Send for Catalogu Mining, Wrecking, Pumping, Drainage, or Irrigating Machinery, for sale or rent. See advertisement, Andrew's Patent, inside page ter or less general interest. The questions are simple, it is true, but to 1.- Is there any good fastening for rubber belts? All the fron fastenings that I have tried are only failures; and in commute oil used in dressing the leather spoils the belts.—J. E. S. 2.-Will some one inform me of a good and quick method of hardening hydraulic cement pipes, or concrete, which will not kill the natural petrifying process?—A. H. B. 3,-I have noticed that trees, struck by lightning, were never split if the bark was torn off, but have found them to subsequently split. Why are lightning rods twisted when struck? Why does lightning that coils round an object never do any damage?-J. C. S. 4.—Have there ever been scales constructed which will weigh correctly, pounds and ounces, at any temperature, through other means than the changeable weight at a fixed point, or the sliding weight and beam? If so, how are they constructed and what is the reason they are not in general use? Scales with springs seem to be unreliable; besides they answer the purpose only to a certain extent, as they do not weigh more than thirty or forty pounds .- A. B. 5.-H. A. S., of Hiogo, Japan, says:-I am an habitual smoker, and have often noticed, when enjoying a pipe or a cigar, that the smoke which tobacco produces changes its color during inhalation, that which escapes from the bowl of the pipe or end of cigar being of a bluer color than that which is puffed out of the mouth. I attribute this to the condensation of some one of the component parts of the smoke. I should be much obliged if some one would kindly inform me if I am correct, and if so, what is it that is condensed, and what condenses it? 6.—How can I get the hardest edge on a plate of cast iron or steel,
or even wrought iron? What I want is a plate of strong metal, say half an inch thick, with one side say 1-16 deep, of the hardest metal to be got for an edge, to work in the ground or gravel, and still strong enough to stand some concussion. Will case hardening do? Can cast steel be case hardened to it? Also, can you tell me who is the original inventor of the acuum steam pump?-H. B. SPECIAL NOTE. - This column is designed for the general interest and is struction of our readers, not for gratuitous replies to questions of a purely business or personal nature. We will publish such inquiries, however, when paid for as advertisements at \$1.30 a line, under the head of "Business and Personal." ALL references to back numbers must be by volume and page. E. T. N., of Pa,-The mineral you send is iron pyrites-sulphur and fron B. J. K., of Ga., will find methods for curing his gun of its propensity to scatter fully described on pp. 42, 58, 74, 107 of our volume Absolutely the best protection against Fire-Babcock Extin-F. H. J. asks for practical directions for making bibulous paper for drying crystals, and for making salts of copper, cobalt, and silver. The paper can only be made in a paper mill, and common blotting paper will answer the purpose. The salts of metals can be purchased for very much less than they can be made. Consult any good chemistry for the > C. Y. asks:-Will you please tell me through your paper what the difference is between a salinometer and a hydrometer? Answer: In principle, none. The salinometer is a glass tube graded specially for salt water, to indicate different degrees of saltness. A hydrometer is a similar instrument graded to indicate the specific gravity of any liquid in > brass fitters obtain the beautiful finish for brass work usually seen on gas fixtures? I believe it is called dip lacquer finish. Please give the ingredients and proportion, and, if possible, the mixture of brass which produces the best results. Answer: The finish is obtained by dipping the article in nitric acid, a special quality called dipping acid being sold for the purpose. After dipping, the article is varnished. As to the metal, any brass founder will give you that. It varies with the intended use of the casting. Fine yellow brass is composed of 66 parts of copper and 34 parts of zinc > F. R. says:—Will you please tell me whether the diamonds used in the diamond drill are a manufactured article? A friend tells I they are so, but I think they are the true black diamond. Answer: The diamonds used in drills and stone saws are not manufactured. By no process at present known can the qualities of the diamond be imitated. ands used in drills are known here as black diamonds, and have the appearance of close grained coal. This substance is termed by dealers ado, and appears to occupy a place between anthracite coal and the real diamond, having the hardness of the latter. The carbonado is found > J. M. says:-I saw a reply to a correspondent concerning the old wheel question, and send this to say that, if you have no objafter having expressed an unwillingness to admit discussion on that sul ject at this time, I will say to D. W. S., not only what I think, but exactly how it can be proved that, as per construction of the question, the wheel makes only one revolution; and this I will do with an article no longer than your reply to D. W. S., on page 330 in your last issue, with a few rings for a diagram. Please therefore to say to J. M. how you like my proposition. Should a discussion follow you are not required, you know to take sides, if not so disposed. Answer: We should be very glad to re-open the wheel discussion if we were not fully satisfied that it could lead to no good result. The very same diagrams by which our correspondent thinks he can conclusively prove the one revolution, can be used by the two revolution people to establish the correctness of their ideas. In the course of the former discussion, we frequently received similar mod els and similar diagrams from opponents for the purpose of proving their ordinary heat that one hundred pounds pressure has in an ordinary steam generator? Answer: An air pump would accomplish the object intended but, to condense by compression to the extent indicated, would require it to be made very strong, would absorb very great power, and we should be inclined to expect it to prove an unprofitable experiment. Were the experiment made and the full pressure attained, the temperature of the steam would be the same as in the steam boller at the same pressure, viz 237.89 Fahrenhelt, with steam per gage at one hundred pounds per square inch. We should anticipate that it would be found far less expensive to take prime steam from the boller at the desired pressure and femperature than to compress the exhaust steam as proposed. In reply to H. E. C., query 2, page 345, 1 would say that faded writing can be restored by rubbing over with tineture of galls.—F To W. G. Blish, page 340.—A belt can be shifted with the loose pulley on the driving shaft if the driven shaft has a momentum that will keep it in motion until the belt is completely shifted, not otherwise. Also, crossed belts never run so well as straight ones. Better obtain more pulley surface by increasing the size of both pulleys, giving greater belt speed—a double gain. It is difficult to make a belt leave a tight for a loose pulley if the latter is much the smaller, but a slight difference is good practice_J.E.S. To B.S.P., query 3, page 345.—Make a solution of gutta percha in bisulphide of carbon, apply a coat or two around the leak in your gas bag; put also a coat or two on a thin piece of leather. Now warm the two coated surfaces, and at once press firmly together .- E. H. H., of Mass, To H. E. C., query 2, page 345,-Faded ink can usually be restored. Try brushing over the writing a dilute solution of sulphwrie acid to which a few drops of nitric acid have been added. When dry, brush over a dilute solution of prusslate of potash; the faded writing will exhibit a blue color, which will deepen on exposure. Or brush over the writing some solution of hydrosulphuret of ammonium, which by age and exposure has become yellow, and the writing will become Don't be astonished at the pleasant smell of this last plan.-E. H. H., of To B. S. query 3, page 345.—Air slaked lime will not do for making lime cylinders. Take lumps of nice soft chalk, and cut out or turn your cylinders; place in a crucible together with some powdered chalk, submit to a bright red heat for an hour or two, and you will have as nice lime as you can wish .- E. H. H., of Mass. Fo I. W. C., query 4, page 345.—To a solution of nitrate of solver, add solution of cyanide of potassium until no further precipitate is formed; allow it to settle and pour off the clear liquor. Dissolve the sediment in enough solution of cyanide of potassium and form into a paste with prepared chalk. Rub some of this paste on your brass, or copper, or German silver, etc., and you will have a nice thin deposit of silver, of course not so thick or durable as if deposited by a battery. Be careful of the cyanide, as it is deadly poison, and do not let it get near a scratch.—E. H. H., of Mass. ## Recent American and Loreign Latents. Under this heading we shall publish weekly notes of some of the more promi- ROTARY STOOL.-George H. Spencer, Fitchburg, Mass,-This invention has for its object to improve the construction of rotary office stools, chairs, etc., and it consists in the cylindrical nut or spider made with radial arms, having ongitudinal sockets formed in their outer ends, and in the legs or posts with heir upper ends bent inward to enter the longitudinal sockets of the SLEEPING CAR.—William E. Gowdy, Waldron, N. Y.—This invention has for its object to improve the construction of sleeping cars in such a way that each berth may be closed as securely as a state room. When the panels are turned down upon the bottoms of the scats, and the cushions replaced upon said seats, the panels will be entirely out of the way. By this construction, also, all the parts that require to be detached and removed are certain partitions. This construction makes the berths or compartments of a sleeping car become as secure as a state room, and the occupant, when he has bolted the banels upon the inside, can sleep in safety, DUMPING CAR.—John R. Dubois, Virginia City, Nevada.—This invention relates to improvements in the class of dumping cars in which the box is hinged and pivoted so as to be turned horizontally and also be tilted toward either side or end of the track; and it consists in the peculiar arrangement of locking devices for preventing the box from swinging around on the turn table at the same time that it is held from tilting. FIREPROOF FLOOR AND CEILING .- George H. Johnson and Edwin R. Hall, hicago, Ill .- The invention relates to a mode of forming a fireproof floor Chicago, III.—The invention relates to a mode of forming a happroof hour and ceiling by means of slabs and hollow tiles of burnt clay, plaster of Paris, or other incombustible material, applied to the upper and under side, respectively, of timber joists, the slab being of rectangular form and secured by the same devices as the floor boards which are laid thereon, and the tiles being of prismoidal shape and provided with flanges to adapt them to cover and also be supported by strips attached to the sides of the joists. CAR COUPLING .- Perry Brown, Louisville, Ky .- The invention is an im-CAR COUPLING.—Perry Brown, Louisville, Ky.—The invention is an improvement on that recently patented to same party. The link acts, as in that case, on a pivoted support for the coupling pin, so that the latter drops into its place as the cars come together. In this instance, the coupling pin is extended vertically to the top of the car, and is provided with a curved arm to act on a radial arm or projection of a similar extension of the shaft of the valve or
said pivoted support, so that, the coupling pin being first raised, the support may be caused to move under it and thus place the coupling in readiness for automatic action without necessity for the operator to enter between the cars or descend from them for that purpose. MEANS OF PROPULSION.—Seth R. Foster, St. John, Canada.—This inven-tion relates to a new paddle attachment to steam engines for propelling ves-sels of various sizes, and consists in suspending the paddles directly from the ends of the walking beams of t the ends of the walking beams of the properer. The intentor probast to impart the requisite vibratory motion to the beam by a jointed rod connec-tion with a crank shaft, and to rotate the crank shaft by the pistons of two steam cylinders. The vibrations of the beam on its pivot serve to impart up and down motion to the dashes and paddles; but the horizontal sweep is imparted to the same by means of rods which connect them respectively with the cranks of the shaft. The invention can also be used for canal boats, in which case the propeller is placed on the bow or stern by a little alteration in its construction, namely, by having two walking beams instead of one, the sweeps attached to one end instead of both, and propelling machinery ttached to the other end of each beam MILE COOLER.—Irving Wheeler, of Massena, N. Y.—This invention relates to an improved milk cooler by which a small quantity of water can be made to absorb nearly all the animal heat of the milk for the purpose of preparing it for market or for churning. The invention consists in the arrangement of a spiral water chamber beneath the milk pan for obtaining a large circulating channel, and, consequently, fully utilizing the heat absorbing qualities of the water. INSOLE FOR BOOTS AND SHOES.—Garett H. Whittaker, Pittsfield, Mass., assignor to himself and Jacob Stewart, of same place.—This invention relates to a new insole for boots and shoes, with the object of keeping the feet warm by its use and of curing and preventing chilblains and other unpleas ant and injurious diseases caused by cold feet. The invention consists in making the sole of three thicknesses of material, of which the lower is rubber cloth, the middle, palm leaf steeped in sulphur solution, and the upSEED PLANTER.—John H. Dancy, of Dancyville, Tenn.—This invention relates to the class of seed planters in which the amount of seed required for a hill is clevated within the seed hopper and discharged through a hole in the upper part of the hopper into the drop tube. The object of the invention is to insure the planting of the requisite amount of seed at proper intervals and without injury to the seed. The invention consists in the use and new arrangement, with the vertical slide which elevates the seed to be dropped to the hole in the upper part of the hopper, of a cut-off, and other appurtenances which are necessary in order to make the slide effective. SASH HOLDER.—William Wilson Amos, of Olathe, Kansas.—This invention has for its object to improve the construction of the sash holder and lock, for which letters patent No. 125,151 were issued April 2, 1872. The invention consists in a hinged box made inclined or tapering, and in it is placed loosely a small box, in which is placed a tapering rubber block. The box and its contents are held out against the casing by the spring. With this construction, when the sash is being lowered, the friction of the window casing upon the rubber block forces the said rubber block and its sliding box or case upward into the shallower part of the tapering box so that the rubber block will hug the casing and thus support the sash by friction. STELLE TRADER FOR A STELLE STELLE TRADER FOR STELLE STELL STEAM EXHAUST FOR LOCOMOTIVES.—Thomas Davies, of Cleveland, Ohio.—This invention relates to an improvement in the means for supporting the ring jet pipes through which the steam is exhausted in certain marine boilers. An upright pipe, which is tapered and open at each end, forms a support for the ring exhaust pipe at any point in its hight, according to the predetermined size of the said ring and the point of its insertion in the amoke box. Sawing Machine.—William C. Daniel, of Point Pleasant, Mo.—This invention relates to a new reciprocating buck saw, in which the saw frame and carriage are vertically adjustable and suspended from a windiass which unwinds automatically by means of an escapement attachment, so that the downward feed of the saw will be regular and gradual. FORM FOR LAYING BRICK PAVEMENTS.—Samuel C. Brewer, of Water Valley, Miss.—This invention is embodied in a device for gaging the bricks for laying "herring-bone" pavement, calculated to insure regularity in the work. It consists of a brick paving gage, having right angled notches in one edge as deep as the longest bricks, and whose sides are arranged on angles of forty-five degrees with the long axis. angles of forty-five degrees with the long axis. Elevated Wiee Way.—George Killam, of Fort Dodge, Iowa.—This invention has for its object to furnish an improved construction for elevated railroads. The track is supported by two rows of posts, at a distance spartequal to the width of the track. The upper ends of the posts are fitted into and secured to castings which are made heavy and strong, and grooved transversely in the middle part of their upper sides with a deep and wide groove. The upper sides of the castings have grooves formed in them, of such a depth and breadth as to receive the flanges of the wheels of the ear. The tops of the ribs between the longitudinal grooves of the castings are grooved sufficiently to bed the wires which form the track and are secured to the castings. The axies pass beneath the bottom of the car up along its sides, and project to receive the wheels at such a point that the center of gravity of the car may be considerably below the point of support. Directly beneath the upper wires are placed a second set of wires, the ends of which pass through the body of the castings. The shoulder upon the inner side of the castings, through which the laner wire passes, is made wide and is grooved longitudinally to receive the flange of the lower wheel. The over wheels revolve upon the journals of arms which are formed upon the axles and project into such a position that the wheels may roil along the lower side of the inner wire and thus effectually prevent the upper wheels from leaving the wires. ORE CLEANER AND SEPARATOR.—John H. Hillman, of Trigg Furnace, Ky.—This invention has for its object to furnish an improved machine for separating or cleaning ore by a current or blast of air. The ore after being crushed to the desired fineness is delivered into the hopper by any suitable means, and is fed into a cylinder which, by its motion, keeps the ore rolling and silding about, causing it to pass down to the lower end of said cylinder. This movement of the ore rubs off the dirt and dust, which is carried out through the cylinder, pipes, and fan by and with the current of air. The smaller particles of ore will pass through the holes of the cylinder while the larger particles will be carried down to the ore receiving box. When the ore has sufficiently accumulated in the box, it will be discharged into any suitable receptacle provided for that purpose. A jacket is made to fit the cylinder at its ends and at its side edges, to prevent a current of air from passing in through the holes in the upper part of the said cylinder, thus making the current of air strong in the lower part of the cylinder where the small particles of ore must pass through. the small particles of ore must pass through. Adjustable Scarfold.—William A. Jester, of Holliday's Cove, W. Va.—The object of this invention is to furnish safe and convenient means for supporting house builders and painters with their materials and implements by the sides of buildings. It consists of a scaffold made of two uprights on which sides a triangular bracket. The platform upon which the workmen stand is supported by the bracket. In the top of the upright is a pulley. A clamp consisting of two ormore jaws is attached to a horizontal bar. This har is confined to the upright, so that it can slide up and down. One jaw (or pair of jaws) is rigidly fastened to the bar. The other jaw (or pair of jaws) operates as a lever, and the two are pivoted together and act much like a pair of pinchers. A rope is connected with the lower end of the jaw. This clamp, it will be seen, can be raised or lowered so as to be grappled on to roofs or projections of different hights from the ground. Two or more of the uprights with bracket and clamp attached are employed in supporting the platform. Last:—Joseph Anzer, of Ashtabula, Ohio.—The invention consists in pro- Last.—Joseph Anzer, of Ashtabula, Ohlo.—The invention consists in providing means for locking the two parts of a last against lateral as well as vertical displacement. Packing Board for Principal Cleveland, of Jersey City, N. J.—This invention has for its object to produce a compact and symmetrical package of lead pencils, pen holders, crayons, or similar articles. A piece of wood or other material is inserted between the pencils that constitute a package, the inserted piece being grooved for each pencil to hold it firm independent of the other pencils. The inserted piece also serves to enlarge the package so as to produce a large surface for the admission of a showy label. This device is so constructed that it enables the retailer to withdraw several pencils from a package without losing the use of the label, the package still retaining its shape. MACHINE FOR TURNING LOGS IN SAW MILLS.—George W. Baker, Elizabeth City, N. C.—This invention consists in the provision of a sliding carriage moving horizontally in ways or guides beneath the log deck and carrying a vertically reciprocating toothed turning bar, so as to snable the same to be horizontally adjusted for action upon logs
of various lengths. The invention further consists in the combination with the movable carriage of a sliding a :lf-adjusting weighted block for exerting a constant pressure upon the turning bar to hold the same in contact with the log. Manufacture of Salt.—John McGrew, Ravenswood, W. Va.—The invention consists in providing the inside of a furnace with an air jacket and discharging the heated air into the bottom of a vessel of brine or salt water; in passing the unconsumed products of combustion through vessels of brine or salt water, thereby abstracting the heat and utilizing it for the general purpose of the apparatus; and finally, in a drying apparatus of such construction and so connected with the furnace that the salt is conveniently as well as effectually dried before it leaves the apparatus. MEDICAL COMPOUND FOR THE CURE OF DIABRREA.—Mrs. A. B. Dorman, Cape Girardeau, Mo.—The invention consists in red oak bark, cinnamon, cloves, dandclion root, and brandy mixed in certain proportions with boiling water. This compound has been applied to the most obstinate cases with a prompt and marked effect, the diarrhoxa yielding to the treatment in a very short time. CAR COUPLING.—Darius Sutherland, Milo, III.—The invention relates to that special class of car couplings which are made to couple the cars automatically or by impact, and it consists in attaching the pin to a lever and weighted lift bar, arranged outside of the draw head and above the platform of car; whereby a projection from the top of one car is made to strike the lift-bar, whose weight turns the lever on its fulcrum and carries down the pin into the link. WHIFFLETREE FOR DETACHING HORSES FROM VEHICLES.—Albert H. McAllister, Cotton Plant, Miss.—This invention has for its object to furnish an improved whiffletree, which shall be so constructed that should the horse or horses become frightened or otherwise unmanageable, or should other cause or causes reader it advisable, they may be readily detached from the carriage and allowed to go free. TURING TONOS.—George A. Holden, Ruggyille, Pa., assignor to himself and J. R. Holden, of same place.—This invention has for its object to furnish an improved tubing tongs or pipe wrench, designed especially for taking tubing out of and putting it into wells, and which shall be so constructed as to take a prompt and firm hold upon the pipe, and so as to enable two men to operate with the same tongs, thus avoiding the necessity of using two ordinary tongs, and the consequent risk of injury to the tubing. ADDRESS PLATE FOR TRUNKS.—James R. Kirk, Mariborough, Mass.—This invention relates to a new construction of address plates for trunks, boxes, etc., in which the paper, slate, or other substance upon which the address is written is held beneath a small pane of glass by a hinged frame, said frame being locked by notched disks, to be unlocked and awung open whenever the address is to be changed. The plate in which the hinged frame and the notched disks are arranged is rigidly fastened to the trunk or box, and may further serve as a support for a handle. CHECK PUNCH.—José R. Mesa, Brooklyn, N. Y.—This invention has for its object to produce an instrument for punching the number or amount to which checks or similar documents of value are drawn through the same and feeding the same forward to obtain the necessary spaces between the figures punched. It consists in a rotary cylinder with a series of vertical punches that represent the several figures and characters to be punched through the paper. The cylinder can be turned so as to bring any one of the punches under a knob or button, which, when struck by hand, forces the punch under it against the paper to perforate the same in the desired manner. Each punch is provided with a pendant by which, in its descent, it will work a pawl and ratchet, and thereby turn one of the reliers between which the paper is held to feed the paper in the requisite ratio. the paper is held to feed the paper in the requisite ratio. Bottle Russen.—James Roue, St. John, Canada.—The object of this invention is to provide convenient and efficient means for rinsing soda water and other bottles, tumblers, and similar vessels. It consists in the valve chamber or shell, consisting of a vertical tube with one or more branches, for attaching a supply pipe from the water fountain. The rinser is supported in any suitable manner in a sink. The lower end of the valve rod is connected with a paddle, by means of which the valve is lowered. The valve is held in position (or closed) by the spiral springs which surround the valve rod, with one end bearing against the valve and the other on the bottom of the valve chamber. With the water supply pipe connected with either of the branches and with a sufficient head of water, when the valve is pressed down the water will rush into the tube and be discharged from a rose head with a force proportioned to the hight of the head of water. This will effectually rinse the insides of abottles, tumblers and all similar vessels, when the tube is inserted therein. Tool. REST FOR LATHES.—Charles F. Hadley, Chicopee, Mass.—The invention consists in the combination of a horizontal screw and nut with an inclined lever, which supports the tool rest, and which determines the hight of the same by its greater or less inclination. By this means the rest can be adjusted with great ease, and will set the tool to suitable hight without disturbing it otherwise. Heretofore the tools had usually to be loosened in their holders before they could be vertically adjusted, and were thereby often disturbed after their positions otherwise had been ascertained with care, thus causing much loss of time and labor. This invention may be found illustrated on page 274, present volume Scientific American. Toxoueing and Grooving Knife.—William B. McClain, Sandusky, Ohio.— This invention has for its object to make tongueing and grooving knives adjustable, so as to enable their use for larger or smaller tongues, deeper or shallower grooves, without requiring their removal from the cutter head. This invention consists in making each cutter in three parts, the middle projecting or receding part being lengthwise adjustable between the others. #### [OFFICIAL.] ## Index of Inventions For which Letters Patent of the United States were granted. FOR THE WEEK ENDING NOVEMBER 12, 1872, AND EACH BRARING THAT DATE. SCHEDULE OF PATENT FEES: | | 1 | |--|-------| | On each Trade-Mark | | | On filing each application for a Patent (seventeen years) | 81 | | On issuing each original Patent | 82 | | On appeal to Examiners-in-Chief | | | On appeal to Commissioner of Patents | | | On application for Reissue | | | On application for Extension of Patent | | | On granting the Extension | | | On filing a Disclaimer | | | On an application for Design (three and a half years) | | | | | | On an application for Design (seven years) | | | On an application for Design (fourteen years) | 80 | | | 100 | | Air compressing apparatus, B. T. Babbitt | 100,0 | | Air navigating apparatus, C. McDermott | 133,1 | | Amalgamating gold and silver, apparatus for, J. Oliver | 182, | | Animal deposits in streets, apparatus for preventing, E. Berlinger | 133,0 | | Auger, earth, I. N. Pyle | | | randers's control at our a Succession of the suc | | | Air compressing apparatus, B. T. Bacotte | 100,000 |
--|----------| | Air navigating apparatus, C. McDermott | 133,04 | | Amalgamating gold and silver, apparatus for, J. Oliver | 122,911 | | Stillings delinates in services, while some con boundaries and | 153,00 | | | 132,560 | | Dates - Juniper and the suggester was a continue to the contin | 133,00 | | THESE DOLLOWS AND INST BY VANDALOUS CO. | 132,98 | | DEST CHARGE OF A CHEMISCHASSICS CONTRACTOR OF THE TH | 133,00 | | DOILES, M. SERIE AND SECTIONS OF STREET | 152,97 | | POLICE STREET, | 132,94 | | DOLLEY, STORING STREET, ST. C. L. CONTRACTOR ST. C. | 132,91 | | BOTHER ACCIONS MODULINATES OF THE ACCIONS | 153,08 | | tito a rail abbutarant as on reserve | 132,59 | | | 133,00 | | | 132,95 | | marrial abbaracias us as yet sates | 133,06 | | morring machine and | 133,00 | | | 103,04 | | Pridges, girder and chord for Iron, Mills and Smith | 132,97 | | Bronzing compound, A. Towne | 132,99 | | THE PROPERTY NAME OF STREET, S | 122,94 | | | 175,00 | | District, marchine for members, or severe | 132,94 | | | 130,00 | | Bustle, D. fimith | 133,00 | | Butter carrier, B. Yaw | 1112,00 | | Butter printer, B. Yaw | 132,00 | | Car coupling, E. T. Barlow | 133,00 | | Car spring, A. Bridges | 1773,010 | | Car and truck, ratificat, is a kindle of the control contro | 133,00 | | | 133,07 | | Carpet cleaning machine, Smith and Story | YOR'NG | | Carriage wheels, hub for, J. Ridge | 1/11,00 | | Cartridge box, P. S. and F. M. Thomson | 182,90 | | Carving, polishing, etc., machine for, R. T. Smith | 122,80 | | Coment W McKay | 1182,97 | | Chales machine for making ornamental, Bancroft and Wood | 182,91 | | Chair seat and back, A. B. Clark | 1702,00 | | Chess and checker board, S. L. Fleishman. | FORMAN | | | | | local scath C H Venom | 1,071 | |--|--| | loset, earth, G. H. Vroom 19 lothes dryer, G.W. Page 19 lothes rack, H. W. Ross 18 | 1,5/2 | | ombination tool D. Heaton 183 | 1,500 | | orn sheller, hand, J. O. Frazier 122
ornice for drapery, H. R. Watson 122 | 2,941 | | ream strainer, H. Blake 133 | 1,014 | | ultivator, J. G. Stowe | | | Hiching machine, A. Spencer | 1,069 | | oor securer, G. B. Pharo | 0,005 | | Prier, fruit, B. L. Ryder | 3,040 | | Oredging machine, pneumatic, Faber du Faur and Campbell | 2.913 | | igg carrier, W. D. Taber 13
Sence, portable, J. J. McMaken 13 | 2,997 | | Fire arm, breech loading, W. S. Smoot | 0.000 | | Fly catcher, C. E. Penny. 11 Fly catcher, W. H. Rice. 11 | 12,977 | | Fruit box, C. W. Weston | 17,542 | | Furnace for roasting ore, M. P. Ross | 20,892 | | Furrow staff, G. H. Comer 11 | 12,962 | | Galvanic battery, W. J. Wilder. 11 Gas fittings, machine for tapping, R. T. Crane. 11 | 12,016 | | Gas pipes, drip or water tap for, J. H. Vansteenburgh | 12,067 | | Glass bottle mold, J. J. Christie | 12,509 | | Grain cleaner, J. P. Leonard. 1 Grain separator, E. R. J. Ueberroth 1 | 070,55 | | Harness, rosette for, F. F. Reynolds. 1 Harness, hold back for, J. C. Covert, (relssue). 1 | | | Harrow, T. C. Hooker | 5,142 | | Harvester, W. R. Low 1 Harvester dropper, A. Goodyear 1 | 32,970 | | Hatchet, D. E. Weaver. 1 Hay loader, A. Garyer. 1 | 22,596 | | Heel trimming or burnishing machine, holding device for, J.R.Folsom | 32,944 | | Hides, mode of tanning, J. R. Enos | 33,021 | | Horse hay rake, J. Heldy. 1 Hose, A. S. Libby. 1 | 33,044 | | Insect destroyer, J. G. G. Garrett | 132,915 | | Iron and steel, welding, J. M. Cooper | 33,500 | | Jib stays, backer for, T. Lynch | 170,581 | | Ladder, construction of step, C. G. Udell. | 302,505 | | Lantern, G. Wallingford | 112,995 | | Lantern, A. French Leather, machine for softening, H. Cunningham. | 132,902 | | Letter box, L. De Mets. | 132,964 | | Lock, permutation, T. J. Sullivan. Lock, sea), Brooks and Whitney. | 132,906 | | Lock, till, C. B. and W. H. Jackson Mowing machine, Burdick and Le Boy | 123,635 | | Oil cake trimmer, W.
Hawes | | | | | | Oll cans, stopper for, E. €. Godwin | 133,024
132,955 | | Off cans, stopper for, E. C. Godwin | 133,024
132,955
133,029
132,904 | | Off cans, stopper for, E. C. Godwin Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation | 133,024
132,965
133,029
132,904
132,990
131,042 | | Off cans, stopper for, E. C. Godwin Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue). | 133,024
132,965
122,029
122,904
122,900
121,042
133,047
5,144 | | Off cans, stopper for, E. C. Godwin Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue). Pition, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. | 133,024
132,955
132,029
132,904
132,900
133,047
5,144
133,064
133,064 | | Off cans, stopper for, E. C. Godwin Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue). Pinlon, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley. Planter, corn, J. Rice. | 132,024
132,965
122,065
132,004
132,860
131,042
133,047
5,144
133,064
132,964
132,964
132,964 | | Off cans, stopper for, E. C. Godwin Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue) Philon, reversible watch, N. Staffin. Platon packing, G. W. Reisinger. Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. | 102,024
102,965
102,969
102,904
102,900
103,042
103,047
5,144
103,064
102,984
102,984
102,984
102,985
102,910
102,925 | | Off cans, stopper for, E. C. Godwin Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producting metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Paraffin, treatment and purification of, Letchford and Nation. Photograph mount, A. C. Partridge, (reissue) Pinion, reversible watch, N. Staffin Piston packing, G. W. Reisinger. Planter, corn, H. A. Riddey Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. | 132,024
122,955
122,029
122,904
122,900
121,042
133,047
5,144
123,064
123,064
123,065
122,910
122,923
122,005 | | Off cans, stopper for, E. C. Godwin Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissne) Pinion, reversible watch, N. Staflin. Piston packing, G. W. Reisinger. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. | 130,024
132,965
122,960
132,960
132,960
132,042
133,042
133,064
133,064
133,064
132,984
132,984
132,985
132,900
132,910
132,930
132,000 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and partication of, Letchford and Nation. Paraffin, treatment and partication of, Letchford and Nation. Photograph mount, A. C. Partridge, (reissue) Photograph mount, A. C. Partridge, (reissue) Pinion, reversible watch, N. Staffin Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Alhen Projectile, sub-caliber, E. A. Dana. Pamp, oscillating, W. Painter. | 132,024
132,955
122,955
122,950
132,960
132,047
5,144
133,064
132,955
132,955
132,955
132,955
132,900
132,923
133,000
132,933
133,002
132,948 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue) Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen Projectile, sub-caliber, E. A. Dana. Pamp, oscillating, W. Painter. Quartz mills, tappet for, B. McCanley Railroad rail joint, T. Slaughter. | 133,024
122,955
122,965
122,960
122,960
121,042
133,047
5,144
123,064
122,984
122,984
122,984
122,930
122,010
122,010
122,010
122,010
133,002
132,011
133,002
132,011
133,002
132,011
133,003 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Paraffin, treatment and purification of, Letchford and Nation. Photograph mount, A. C. Partridge, (refssue) Pinion, reversible watch, N. Staffin Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen Projectile, sub-caliber, E. A. Dana Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCauley Railroad rail joint, J. MeL. Staughton. Railway cross tie, D. C. Kellam. | 132,024
122,965
122,965
122,964
122,960
123,042
133,054
123,054
123,054
123,984
133,056
132,984
133,000
132,933
133,000
132,933
133,000
132,933
133,000
132,933
133,000
132,933
133,000
132,933
133,000
132,933
133,000
132,933
133,000
132,933
133,000
132,933
133,000
132,933
132,933
132,933
132,933
132,933
132,933
132,933
132,936
132,936 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (refssue). Plation, reversible watch, N. Staffin. Platon packing, G. W. Relsinger. Planter, corn, H. A. Riddey. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Raddey. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCanley Railroad rail joint, J. Slaughter. Railroad rail joint, J. McL. Staughton. | 132,024
122,955
122,956
122,950
122,950
122,950
123,042
133,054
133,054
133,054
132,953
132,953
132,910
133,002
133,002
133,002
133,002
132,938
132,938
132,960
132,960
132,960
132,960
132,960
132,960
132,960
132,960 | | Off cans, stopper for, E. C. Godwin Oils and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Paraffin, treatment and purification of, Letchford and Nation. Photograph mount, A. C. Partridge, (reissue). Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pamp, oscillating, W. Painter. Quartz mills, tappet for, B. McCauley. Railroad rail joint, T. Slaughter. Railroad rail joint, J. MeL. Staughton. Railway cross tie, D. C. Kellam. Railway cross tay, J. H. Bullard. | 133,024 122,955 122,959 122,960 122,960 122,960 122,960 123,064 123,065 122,910 123,065 122,910 123,065 123,000 123,012 122,933 133,048 132,936 132,948 132,936 132,948
132,936 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue) Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dans. Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCauley. Railroad rail joint, J. McL. Staughton. Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. | 133,024 132,055 122,059 122,000 122,000 122,000 122,000 123,001 133,004 122,984 123,005 123,000 123,00 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Paraffin, treatment and purification of, Letchford and Nation. Photograph mount, A. C. Partridge, (refssue) Pinion, reversible watch, N. Staffin Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen Projectile, sub-caliber, E. A. Dana Pump, oscillating, W. Painter. Quarts mills, tappet for, B. McCauley Railroad rail joint, J. McL. Staughton Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sall, reefing, West and Smith Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw, N. Johnson. | 133,024 122,055 122,059 122,304 122,805 122,206 122,207 131,047 131,064 132,065 132,208 132,019 132,006 132,010 132,010 132,016 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue) Pinion, reversible watch, N. Staffin Piston packing, G. W. Reisinger Planter, corn, H. A. Ridley Planter, corn, J. Rice Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen Projectile, sub-caliber, E. A. Dans. Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCauley Railroad rail joint, J. McL. Staughton Railway cross tie, D. C. Keilam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Sasaw mill, D. Cilley Saw blades, machine for grinding, C. H. Colby. | 133,024 132,955 122,950 122,950 122,950 122,950 123,951 133,054 122,984 123,955 133,054 122,984 123,955 123,050 123,051 123,052 123,050 123,051 | | Off cans, stopper for, E. E. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (retssue) Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger Planter, corn, H. A. Ridley Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Alben Projectile, sub-caliber, E. A. Dana. Pamp, oscillating, W. Palnier. Quartz mills, tappet for, B. McCauley Railroad rail joint, T. Slaughter. Railroad rail joint, J. McL. Staughton Railway cross tie, D. C. Kellam Rake, horse hay, J. H. Rullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley Saw blades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstroog. | 133,094 132,955 122,950 122,990 122,990 122,990 122,990 123,947 5,144 123,964 123,954 123,955 123,000 122,923 133,000 122,923 133,000 122,923 133,000 122,923 133,000 122,923 133,000 122,923 133,000 122,923 133,000 122,923 133,000 122,923 133,000 122,923 133,000 122,923 132,924 132,925
132,925 132,925 132,925 132,925 132,925 132,925 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Paraffin, treatment and purification of, Letchford and Nation. Photograph mount, A. C. Partridge, (refissue). Photograph mount, A. C. Partridge, (refissue). Plaion, reversible watch, N. Staffin. Platon packing, G. W. Relsinger. Planter, corn, H. A. Riddey. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pump, oscillating, W. Painter. Quariz mills, tappet for, B. McCanley. Railroad rail joint, J. Slaughter. Railroad rail joint, T. Slaughter. Railroad rail joint, T. Slaughter. Railroad rail joint, J. McL. Staughton. Railway cross ite, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, Window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Saw blades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw cutting machine, J. J. Grant. Sewing machine, C. E. Langusaid. | 133,094 132,055 122,050 122,090 122,090 122,090 122,090 122,090 123,004 123,005 123,00 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue) Pinion, reversible watch, N. Staffin Piston packing, G. W. Reisinger Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen Projectile, sub-caliber, E. A. Dans. Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCauley Railroad rail joint, T. Slaughter Railroad rail joint, J. McL. Staughton Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith Sash fastener, C. C. Algeo. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Sas frame, W. Hankin, Sr. Sas mill, D. Cilley Saw blades, machine for grinding, C. H. Colby Screw, wood, J. S. Armstrong Screw cutting machine, J. J. Grant. Sewing machine, C. E. Langonid. | 133,024 132,055 122,050 122,090 122,090 122,090 122,090 123,047 5,144 123,066 122,940 123,066 122,000 123,000 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Paraffin, treatment and purification of, Letchford and Nation. Photograph mount, A. C. Partridge, (refissue). Photograph mount, A. C. Partridge, (refissue). Plation, reversible watch, N. Staffin. Platon packing, G. W. Relsinger. Planter, corn, H. A. Riddey. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pump, oscillating, W. Painter. Quariz mills, tappet for, B. McCanley Railroad rail joint, J. Slaughter. Railroad rail joint, J. McL. Staughton. Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Sasw, N. Johnson. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Saw mill, D. Cilley. Saw blades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw cutting machines, J. J. Grant. Sewing machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machine, M. Stell. Spinning machine, M. Stell. Spinning machine, spindle and bobble for, J. Roper. | 133,024 132,655 132,659 122,200 132,290 122,290 132,290 132,047 5,144 123,056 122,293 133,056 132,200 132,012 132,030 132,030 132,048 132,366 132,360
132,360 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Paraffin, treatment and purification of, Letchford and Nation. Photograph mount, A. C. Partridge, (refissue) Pinion, reversible watch, N. Staffin Piston packing, G. W. Reisinger. Planter, corn, H. A. Riddey Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen Projectile, sub-caliber, E. A. Dana Pump, oscillating, W. Painter. Quariz mills, tappet for, B. McCanley Railroad rail joint, J. McL. Staughton Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johuson. Saw, N. Johuson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley Sarw cutting machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw cutting machine, driving mechanism for, I. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Sifter or pulveriser, W. C. Bruson. Splaning machines, driving mechanism for, J. Roper. Splice, H. Silbbs. | 133,024 132,055 122,050 122,050 122,050 122,050 122,050 123,047 5,144 123,056 122,250 123,000 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (refswae) Pinion, reversible watch, N. Staffin. Platon packing, G. W. Reisinger. Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Alea. Projectile, sub-caliber, E. A. Dana. Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCauley Railroad rail joint, J. McL. Staughton Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, C. C. Algeo. Sash fastener, West and Smith. Sash fastener, C. C. Lauguaid. Sewing machine, C. E. Lauguaid. Sewing machine, M. Stell. Spinning machine, M. Stell. Spinning machine, S. Spintie, etc., apparatus for rectifying and distilling, E. F. Prentiss. Silve, equalizer, E. P. Spanlding. | 133,024 132,055 122,059 122,004 122,290 123,047 5,144 133,054 133,054 133,054 133,050 133,030 133,030 133,048 132,060 133,060 | | Off cans, stopper for, E. E. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue) Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Alben Projectile, sub-caliber, E. A. Dana. Pamp, oscillating, W. Painter. Quartz mills, tappet for, B. McCanley Railroad rail joint, T. Slaughter. Railroad rail joint, J. McL. Staughton. Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Rullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Saw blades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw cutting machine, J. J. Grant. Sewing machine, C. E. Languaid. Sewing machine, C. E. Languaid. Sewing machine, M. Stell. Spinning machine, M. Stell. Spinning machine, M. Stell. Spinning machine, M. Stell. Spirits, etc., apparatus for rectifying and distilling, E. F. Prentiss. Siare equalizer, E. P. Spaulding. Steam boiler covering, J. D. Jones. | 133,094 132,055 122,309 122,300 122,300 122,300 133,047 132,361 132,060 132,000
132,000 132,00 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Paraffin, treatment and purification of, Letchford and Nation. Photograph mount, A. C. Partridge, (refissue) Photograph mount, A. C. Partridge, (refissue) Photograph mount, A. Riddey. Planter, corn, H. A. Riddey. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Raddey. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectite, sub-caliber, E. A. Dana Pamp, oscillating, W. Painter. Quarte mills, tappet for, B. McCauley Railroad rail joint, J. MeL. Staughton Railway cross tie, D. C. Kellam. Raike, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley Saw blades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw cutting machine, J. J. Grant Sewing machines, driving mechanism for, I. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Sifter or pulveriser, W. C. Bruson. Spinning machine, M. Stell. Spinning machine, M. Stell. Spinning machine, M. Stell. Spirke, H. Stibbs. Spirts, etc., apparatus for rectifying and distilling, E. F. Prentiss. Stare equalizer, E. P. Spaulding. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. D. Jones. Stereoscope, A. Quirolo. | 133,094 122,955 122,900 122,900 122,900 123,90 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everesf and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Parement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue) Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dans. Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCauley. Railroad rail joint, J. McL. Staughton. Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Saw blades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw cutting machine, J. J. Grant. Sewing machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Sifter or pulverizer, W. C. Ruson. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, spindle and bobbin for, J. Roper. Spite, H. Stibbs. Spirits, etc., apparatus for rectifying and distilling, E. F. Prentiss. Stave equalizer, E. P. Spaulding, Steam boiler alarm, J. H. and W. J. Killey. Sieam boiler alarm, J. H. and W. J. Killey. Sieam boiler covering, J. D. Jones. Stereoscope, A. Quirolo. Stove, fire place heating, H. R. Hobbins, (reissue). | 123,024 122,055 122,000 122,000 122,000 122,000 123,001 133,004 122,000 122,000 122,000 122,000 122,000 123,004 122,000 123,004 123,005 123,000 123,00 | | Off cans, stopper for, E. E. Godwin. Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (refssue) Pinion, reversible watch, N. Staflin. Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. A. Dana Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCanley Railroad rail joint, J. McL. Staughton Railway cross tie, D. C. Kellam. Rake, cross tie, D. C. Kellam. Rake, cross tie, D. C. Kellam. Rake, cross, J. H. Bullard. Radder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Saw blades, machine for grinding, C. H. Colby. Serew, wood, J. S. Armstrong. Screw cutting machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spluning machine, M. Stell. Spinning machine, M. Stell. Spinning machine, R. P. Spaulding. Spike, H. Stibbs. Spirts, etc., apparatus for rectifying and distilling, E. F. Prentiss. Siave equalizer. E. P. Spaulding. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam
boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. R. Hobbins | 133,094 132,055 122,050 122,050 122,050 122,050 132,05 | | Off cans, stopper for, E. E. Godwin. Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (refssne). Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pump, oscillating, W. Panter. Quariz mills, tappet for, B. McCauley. Bailroad rall joint, J. McL. Staughton Rallway cross tie, D. C. Kellam. Bake, horse hay, J. H. Bullard. Budder, R. H. Thomas. Sall, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Saw hades, machine for grinding, C. H. Colby. Serew, wood, J. S. Armstrong. Serew cutting machines, driving mechanism for, I. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spluning machines, driving mechanism for, I. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spluning machines, spindle and bobbin for, J. Roper. Spike, H. Stibbs. Spirits, etc., apparatus for rectifying and distilling, E. F. Prentiss. Stave equalizer, E. P. Spanding. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler alarm, J. H. and W. J. Killey. Steam boiler covering, J. D. Jones. Stranger in blocks o | 133,024 122,055 122,050 122,090 122,090 122,090 123,091 133,047 133,041 132,053 133,000 122,023 133,000 122,023 133,000 122,023 133,000 122,030 133,00 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper pags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (relssne). Phinon, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dans. Pump, oscillating, W. Painter. Quartz mills, tappet for, R. McCanley Railroad rail joint, T. Slaughter. Railroad rail joint, J. McL. Staughton Railway cross tie, D. C. Kellam. Itake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Saw biades, machine for grinding, C. H. Colby. Serew, wood, J. S. Armstrong. Serew cutting machine, J. J. Grant. Sewing machine, M. Stell. Splinning machine, splindle and bobbin for, J. Roper. Splic, H. Stibbs. Spirts, etc., apparatus for rectifying and distilling, E. F. Prentiss. Stave equalizer, E. P. Spanding. Steam boller covering, J. D. Jones. Stereoscope, A. Quirolo. Store, free place heating, H. R. Hobbins, (relssue). Store, free place heating, H. R. Hobbins, (relssue). Strainer and funnel combined, C. W. and L. H. Heermance. Sugar in blocks or cubes, manufacture of, A. F. W. Partz. Bogar in cubes, apparatus for cutting disky of, J. King Table, rotating reading, T. Cariwvight. Telegraph instrument, J. B. Stearns. | 133,024 132,055 122,000 122,000 122,000 123,000 123,000 133,000 123,000
123,000 123,00 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everest and Hoss. Ornaments, method of producing metal, W. Henigst. Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue). Phion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pump, oscillating, W. Painter. Quartz mills, tappet for, B. McCanley. Railroad rail joint, T. Slaughter. Railroad rail joint, J. McL. Staughton. Railway cross tie, D. C. Kellam. Itake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sall, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, vindow C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Save bades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw catting machine, J. J. Grant. Sewing machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Silter or pulverizer, | 123,024 122,055 122,300 122,300 122,300 122,300 123,001 133,004 122,233 123,000 122,233 123,000 122,203 123,000 122,203 123,000 122,203 123,000 123,00 | | Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissne). Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Piniter, corn, H. A. Ridler. Planter, corn, H. A. Ridler. Planter, corn, H. A. Ridler. Planter, corn, H. A. Ridler. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Alen. Projectile, sub-caliber, E. A. Dana. Pump, oscillating, W. Painter. Quartz mills, tappet for, R. McCanley. Railroad rail joint, J. McL. Staughton. Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sall, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sr. Saw mill, D. Cilley. Saw blades, machine for grinding, C. H. Colby. Screw. wood, J. S. Armstrong. Screw cutting machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machines, driving mechanism for, J. Roper. Spike, H. Stibbs. Spirits, et | 123,024 122,050 1212,000 1212, | | Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissne). Pinion, reversible watch, N. Staflin. Piston packing, G. W. Reisinger. Piniter, corn, H. A. Ridder. Planter, corn, H. A. Ridder. Planter, corn, H. A. Ridder. Planter, corn, H. A. Ridder. Potato digger, J. P. Raddey. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana Pump, oscillating, W. Painter. Quartz mills, tappet for, R. McCanley. Railroad rail joint, J. McL. Staughton. Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sc. Saw mill, D. Cilley. Saw blades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw catting machine, J. J. Grant. Sewing machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spinning machine, M. Stell. Spintis, etc., apparatus for rectifying and distilling, E. F. Prentiss. Stave equalizer, E. P. Spaulding. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. and W. J. Killey. Steam boller alarm, J. H. Steams. Telegraph instrument, duplex, J. B. Steams. Telegraph instrum | 133,024 122,055 122,004 122,009 122,004 122,000 123,004 133,047 133,044 123,000 123,023 133,000 123,023 133,000 123,000
123,000 123,00 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (refssue). Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Pilanter, corn, H. A. Ridley. Planter, corn, H. A. Ridley. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pamp, oscillating, W. Painter. Quartz mills, tappet for, B. McCanley. Bailroad rall joint, T. Slaughter. Railroad rall joint, J. McL. Staughton Railway cross tie, D. C. Kellam. Bake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, C. C. Algeo. Sash fastener, C. C. Algeo. Sash fastener, W. Galgo. Saw N. Johnson. Saw, N. Johnson. Saw, N. Johnson. Saw Trame, W. Bankin, Sr. Saw mill, D. Cilley. Sarving machine, G. E. Languaid. Sewing machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Bruson. Spiller, E. P. Spanhäng. Steam boller abarin, J. B. and W. J. Killey. Steam boller abarin, J. B. and W. J. Killey. Steam boller abarin, J. B. and W. J. Killey. Steam boller abarin, J. B. and W. J. Killey. Steam boller abarin, J. B. and W. J. Killey. Steam boller abarin, J. B. and W. J. Killey. Steam boller abarin, J. B. Steams. Stereoscope, A. Quirolo. Stone, fire place heating, H. R. Hobbins, (reissue). Strave equalizer, E. P. Spanhäng. Steam boller abarin, J. B. Steams. Tolegraph instrument, duplex, J. B. Steams. Tolegraph | 133,024 122,050 1212,004 1212,005 1212,004 1212,005 1212,004 1212,005 1313, | | Off cans, stopper for, E. C. Godwin. Offs and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst. Paper leading device, A. A. Dunk. Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of, Letchford and Nation. Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (reissue). Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Planter, corn, H. A. Riddey. Planter, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pump, oscillating, W. Painter. Quartz mills, tappet for, R. McCauley. Railroad rail joint, T. Slaughter. Railroad rail joint, J. Staughton. Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Radder, R. H. Thomas. Sall, reefing, West and Smith. Sash faatener, C. C. Algeo. Sash faatener, window, C. Partello. Saw, N. Johnson. Saw bades, machine for grinding, C. H. Colby. Screw, wood, J. S. Armstrong. Screw cutting machine, d. J. Grant. Sewing machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Russon. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Russon. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Russon. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Russon. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Russon. Spinning machine, M. Stell. Spinning machines, driving mechanism for, L. P. Fishburn. Sheet metal ware, bottoming, W. C. Russon. Spinning machines of the parting for cutting disks of, J. King. Table, rotating reading, T. Cartwright. Telegraph instrument, duplex, J. B. Stearns. Telegraph instrument, J. B. Stearns. Telegraph instrument, duplex, J. B. Stearns. Telegraph instrument, duplex, J. B. | 133,024 122,055 122,000 122,000 122,000 122,000 123,000 133,001 123,000 123,00 | | Off cans, stopper for, E. C. Godwin. Olls and paints, box and can for, Everest and Ross. Ornaments, method of producing metal, W. Henigst Paper feeding device, A. A. Dunk Paper bags, machine for making, C. F. Annan. Paraffin, treatment and purification of,
Letchford and Nation Pavement, wood, H. G. McGonegal. Photograph mount, A. C. Partridge, (refssue). Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Pinion, reversible watch, N. Staffin. Piston packing, G. W. Reisinger. Pininer, corn, J. Rice. Plow, gang, C. Kewin. Potato digger, J. P. Radley. Preserving and packing box, B. Yaw. Printing machine, electrical, T. A. Edison. Printing presses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Printing machine, electrical, T. A. Edison. Printing bresses, feed board for, E. Allen. Projectile, sub-caliber, E. A. Dana. Pamp, oscillating, W. Painter. Quartz mills, tappet for, B. McCanley. Railroad rail joint, T. Slaughter. Railroad rail joint, T. Slaughter. Railroad rail joint, J. McL. Staughton. Railway cross tie, D. C. Kellam. Rake, horse hay, J. H. Bullard. Rudder, R. H. Thomas. Sail, reefing, West and Smith. Sash fastener, window, C. Partello. Saw, N. Johnson. Saw frame, W. Hankin, Sc. Saw blades, machine for grinding, C. H. Colby. Screw. wood, J. S. Armstrong. Screw catting machine, d. Et Languaid. Sewing machine, d. Et Languaid. Sewing machine, d. Et Languaid. Sewing machine, d. W. C. Bruson. Sifter or pulverizer, W. C. Bruson. Sitter | 123,024 122,055 127,204 122,205 127,204 122,200 123,047 5,144 123,055 123,000 123,001 | | Washing backs IV Bernan | Alle man | |--|----------| | Wagon brake, H. Brewer | | | Wagon box strap bolt, W. J. Lewis | | | Wagons, hay and grain rack for, C. Jarnagin | | | Warping mill, J. W. Fries | | | Washing fluid, M. A. Sanderson | | | Washing machine, W. Parker | 133,019 | | Washing machine, A. Dehuff, | 132,953 | | Washing and wringing machine combined, C. Robinson | 132,965 | | Water wheel, W. T. Valentine | 132,994 | | Water wheel, turbine, J. A. Kyle | 133,009 | | Wheels, manufacture of gear, J. Comly | 102,899 | | Whip stocks, constructing, D. C. Hull | 132,909 | | Wire rope, machine for compacting, R. P. Rothwell | 103,059 | | Wire cloth for screening coal, J. W. Brock | | #### APPLICATIONS FOR EXTENSIONS. Applications have been duly filed, and are now pending, for the extension of the following Letters Patent. Hearings upon the respective applications are appointed for the day hereinafter mensioned: 22,941.—RAILBOAD CAR SPRING.—A. B. Davis. January 29, 1873. 22,947.—WHENCH.—D. P. FOSTET. January 29, 1873. 23,060.—ELECTRO MAGNETIC ALABRI.—M. G. FARMET. February 5, 1873. 23,083.—LAMP.—E. J. Hale, C. H. Chandler. February 12, 1873. 23,875.—LAMP SHADE.—C. and A. C. Wilhelm. April 16, 1873. #### EXTENSIONS GRANTED. 22.048.-LOCK.-S. N. Brooks. 22,071.—ELECTRO MAGNETIC ALARM.—M. G. Farmer. 22.104.-REFRIGHRATOR.-A. H. Bartlett. #### DESIGNS PATENTED. 6,244.-THREAD HOLDER.-T. W. Carter, West Meriden, Conn. 6,248.—OIL CLOTH.—H. Kagy, Philadelphia, Pa. 6,248.—OIL CLOTH.—C. T. and V. E. Meyer, Lyon's Farms, N. J. 6,247.—Hub Bands for Wheels.—O. S. Stevens, Belvidere, N. J. 6,248.—Preserve Dish.—H. C. Wilcox, West Meriden, Conn. #### TRADE MARKS REGISTERED. 1,033.—FANCY GOODS.—Cochran, McLean & Co., New York city. 1,054.—Medicine.—V. Delaney, Santa Fe, Ill. 1,055.—Coffees, Spices, etc.—J. M. Earle, New York city. 1,056.—Needles.—Excelsior Needle Company, Wolcottville, Conn. ,057.—Whisky.—P. Fegan, Washington, D. C. 1,058.—Soap.—S. W. McBride & Co., Chicago, Ill. 1,059.—Sugar Curko Hams.—A. Schoeffel, Louisyille, Ky. 1,002.—Soap.—J. W. Swalley, Eric, Pa. 1,061.—Emery Whereis or Blocks.—J. Tyzick, St. John, Canada. # Value of Patents, AND HOW TO OBTAIN THEM # Practical Hints to Inventors ROBABLY no investment of a small sum of money brings greater return than the expense incurred in obtaining a patent even when the invention is but a small one. Larger inventions are found to pay correspondingly well. The names of Blanchard, Morse, Higelow, Colt, Ericsson, Howe, McCormick, Hoe, and others, who have amassed immense fortunes from their inventions, are well known. And there are thousands of others who have realized large sums from their patents. More than Fifth Thousand inventors have availed themselves of the review of the contract of the state sta of the services of Munn & Co, during the TWENTY-SIX years they have acted as solicitors and Publishers of the SCIENTIFIC AMERICAN. They stand at the head in this class of business; and their large corps of sustants, mostly selected from the ranks of the Patent Office: men capable of rendering the best service to the inventor, from the experience practically obtained while examiners in the Patent Office: enables MUNN & Co. to do everything appertaining to patents BETTER and CHEAPER than any ings, Petition, Oath, and full Specification. Various official rules and for malities must also be observed. The efforts of the inventor to do all thi business himself are generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent musiness, and have all the work done over again. The best plan is to solicit proper advice at the beginning. If the parties consulted are honorable men, the inventor may safely confide his ideas to them; they will advise whether the improvement is probably patentable, and will give him all the direction #### How Can I Best Secure My Invention? This is an inquiry which one inventor naturally asks another, who has had ome experience in obtaining patents. His answer generally is as follows Construct a heat model, not over a foot in any dimension—smaller if possible—and send by express, prepaid, addressed to Munx & Co., 37 Park Row, New York, together with a description of its operation and merits. On receipt thereof, they will examine the invention carefully, and advise you as to its patentability, free of charge. Or, if you have not time, or the means at hand, to construct a model, make as good a pen and ink sketch of the improvement as possible and send by mall. An answer as to the prospect of a patent will be received, usually, by return of mail. It is sometimes best to have a search made at the Patent Office; such a measure often saves the cost of an application for a patent. #### Preliminary Examination. In order to have such search, make out a written description of the inven tion, in your own words, and a pencil, or pen and ink, sketch. Send these, with the fee of \$5, by mail, addressed to Munn & Co., 37 Park Row, and in due time you will receive an acknowledgment thereof, followed by a written report in regard to the patentability of your improvement. This special search is made with great care, among the models and patents at Washing ton, to ascertain whether the improvement presented is patentable. #### To Make an Application for a Patent. The applicant for a patent should furnish a model of his invention if sus-ceptible of one, although sometimes it may be dispensed with; or, if the in-vention be a chemical production, he must furnish samples of the ingredients of which his composition consists. These should be securely packed, the inventor's name marked on them, and sent by express, prepaid. Small models, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft, or postal order, on New York, payable to the order of Munn & Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York con Persons desiring to file a caveat can have the papers prepared in the short-est time, by sending a sketch and description of the invention. The Govern-ment fee for a caveat is \$10. A pamphlet of advice regarding applications for patents and caveats is furnished gratis, on application by mail. Address MUNN & Co., 37 Park Row, New York. #### Reissues. A reissue is granted to the original patentee, his heirs, or the assignces of the entire interest, when, by reason of an insufficient or defective specifica-tion, the original patent is invalid, provided the
error has arisen from inad-vertence, accident, or mistake, without any fraudulent or deceptive inten- A patentee may, at his option, have in his reissue a separate patent for each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re-quirements of the law, as in original applications. Address MUNN & Co. 37 Park Row, for full particulars. #### Rejected Cases. Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderate Address MENN & Co., stating particulars. #### Trademarks. Any person or firm domiciled in the United States, or any firm or corpora tion residing in any foreign country where similar privileges are exten to citizens of the United States, may register their designs and obtain pro-tection. This is very important to manufacturers in this country, and equal ly so to foreigners. For full particulars address MUNN & Co., 57 Park Row #### Design Patents. HOW TO This is the closing inquiry in nearly every letter, describing some invention which comes to this office. A positive answer canonly be had by presenting a complete application for a patent to relievo, or bas relief; any new and original design for the printing of wool en, slik, cotton, or other fabrics; any new and original impression, orna-ment, pattern, print, or picture, to be printed, painted, east, or otherwise placed on or worked into any article of manufacture. Design patents are equally as important to citizens as to foreigners. For full particulars send for pamphlet to MUNN & Co., 37 Park Row, New York. #### Canadian Patents. On the first of September, 1872, the new patent law of Canada went into force, and patents are now granted to citizens of the United States on the same favorable terms as to citizens of the Dominion. In order to apply for a patent in Canada, the applicant must furnish a model, specification and duplicate drawings, substantially the same as in applying for an American patent. The patent may be taken out either for five years (government fee or \$20) for ten years (government fee \$40) or for fifteen years (government fee \$60). The five and ten year patents may be extended to the term of fifteen years The formalities for extension are simple and not expensive. American inventions, even if already patented in this country, can be patented in Canada provided the American patent is not more than one year All persons who desire to take out patents in Canada are requested to communicate with MUNN & Co., 37 Park Row, N. Y., who will give prompt attention to the business and furnish full instruction. #### Foreign Patents. The population of Great Britain is 31,000,000; of France, 37,000,000; Belgium, 5,000,000; Austria, 35,000,000; Prussia, 40,000,000; and Russia, 70,000,000. Patents may be secured by American citizens in all of these countries. Now is the time, while business is dull at home, to take advantage of these immense foreign fields. Mechanical improvenents of all kinds are always in demand in Europe. There will never be a better time than the present to take patents abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the patents secured in foreign countries by Americans are obtained through our Agency. Address MUNN & Co., 37 Park Row, New York. Circulars with full information on foreign patents, furnished free. #### Value of Extended Patents. Did patentees realize the fact that their inventions are likely to be more productive of profit during the seven years of extension than the first full term for which their patents were granted, we think more would avail themselves of the extension privilege. Patents granted prior to 1881 may be extended for seven years, for the benefit of the luventor, or of his heirs in case of the decease of the former, by due application to the Patent Office, ninety days before the termination of the patent. The extended time inures to the benefit of the inventor, the assignees under the first term having no rights under the extension, except by special agreement. The Government fee for an extension is \$100, and it is necessary that good professional service be obtained to conduct the business before the Patent Office. Full Information as to extensions may be had by addressing Munn & Co., 37 Park Row #### Copies of Patents. Persons desiring any patent issued from 1836 to November 25, 1867, can be supplied with official copies at a reasonable cost, the price depending upon the extent of drawings and length of specification. Any patent issued since November 27, 1867, at which time the Patent Office ommenced printing the drawings and specifications, may be had by remit- ting to this office \$i. A copy of the claims of any patent issued since 1896 will be furnished When ordering copies, please to remit for the same as above, and stat name of patentee, title of invention, and date of patent. Address MUNN Co., Patent Solicitors, 37 Park Row, New York city. Menn & Co. will be happy to see inventors in person, at their office, or to advise them by letter. In all cases, they may expect an honest opinion. For such consultations, opinions and advice, no charge is made. Write plain do not use pencil, nor pale ink be brief. All business committed to our care, and all consultations, are kept secret In all matters pertaining to patents, such as conducting interferences, procuring extensions, drawing assignments, examinations into the validity of patents, etc., special care and attention is given. For information, and for pamphlets of instruction and advice MIUNN & CO., PUBLISHERS SCIENTIFIC AMERICAN, 37 Park Row, New York. OFFICE IN WASHINGTON-Corner F and 7th streets, opposite ## Advertisements. Back Page - - - - - - \$1.00 a line. Inside Page - - - - - 75 cents a line. gravings may head advertisements at the same rate per line, by measurement, as the letter-pres The value of the SCIENTIFIC AMERICAN as an advertising medium cannot be over-estimated. Its circulation is to times greater than that of any similar journal now pub-lished. It goes into all the States and Territories, and is read in all the principal libraries and reading-rooms of read in all the principal libraries and reading-rooms of the world. We invite the attention of those who wish to make their business known to the annexed rates. A busi-ness man wasts something more than to see his aster-tisement in a printed necespaper. He wants circulation, if it is worth 25 cents per line to asterize in a paper of three thousand circulation, it is worth \$3.75 per line to advertise in one of forty-five thousand. colored Plate and Chromo Cover. The First Edi on of TWO HUNDIED THOUSAND just printed in agilish and German, and ready to send out. ## JAMES VICK. Rochester, N. Y. ATHE CHUCKS—HORTON'S PATENT from 4 to 26 inches. Also for car wheels. Address E. HORTON & SON, Windsor Locks, Conn. # Utica Steam Engine Co. #### STEAM ENGINES. PORTABLE & STATIONARY. THE BEST, CHEAPEST, MOST DURABLE." Improved Circular Saw Mills, Screw and Lever Set. Send for Circular. UTICA STEAM ENGINE CO., Utica, N. Y. YOUNG, GENERAL AGRST. 42 Cortlandt St., New York. WILLIAM B. ASTOR, JAS. A. FROUDE VV the Duke of Argyll, and Hon. W. H. Seward, with Portraits, Biographics, and Characters, are given in De-cember No. PHRENOLOGICAL JOURNAL. Also, Man, the Inhabitant of Two Worlds; Expression in Art; The Formation of Character-Your Rights; A Pretty Mar Formation of Character—Your Rights: A Freity Mar and a Doil-Faced Woman; Freckles on the Face or Beanty, How to Remove Them; Christian and Inddel Changes of Character; Origin of Metalliferous Deposits New Theory of the Sun's Heat; The Material Creation Memory Worship; The One-Eyed Conductor—again— Psychology; Mental Science in Schools; How the Organ Psychology; Mental Science in Schools; How the Organs of the Brain were Discovered; Time; Tune; Calculation; Constructiveness; Parental Love; Adhesiveness; Combativeness; Self-Kateem; An Ideal Portrait; Familiar Views of Society; &c. Only 30 cents, or \$5 a year. Clubbed with Scientific American, a year for \$5.50. End of vol. \$6. A new vol., 57, begins with the next No. Three months free to all who subscribe at once. Now is the time to subscribe. Address S. R. WELLS, 330 Broadway, New York. THAMPION SPRING MATTRESS-The bed or quantity, to all parts of the world. Liberal dis-count to the trade, F. C. BEACH & CO., Makers, El and ES Duane Street, New York. FOR SALE-The Malleable Iron Works i the Post Office. Address E. C. MIDDLETO. # HILL, CLARKE & CO., ENGINES, BOILERS & STEAM PUMPS IRON & WOOD-WORKING MACHINERY, quare, Boston, Mass. \$50 PER WEEK, Illustrated circulars sent comportunity, Best paying business in the country, and but little capital required. Western Weather Strain Manufacturing Company, Cleveland, Ohio. FOR SALE—A second hand Hewes & Phil-lips Steam Engine, 13 in. cylinder, 36 in. stroke; will be ready for delivery 20th Dec.; previous to which time may be seen running at the Singer Mrg Co's Silk Mill, Bank St., Newark, N. J. TO MANUFACTURERS—We have a pat ent for Carriage and Wagon Hub Boring Machine ont for Carriage and Wagon Hub Boring Machine dand and an Adjustable lift, both having decided advan-ages over others in use, and desire to sell or lease the Eastern and Middle States. Address RAY & JONAS, Burlington, Iowa. RICHMOND, VA., November 20, 1872. THE SHIP-YARD WORKS AND MACHINERY OF THE VIRGINIA STEAMSHIP AND PACKET COMPANY, AT ROCKETTS, ARE FOR SALE, They are complete for all the purposes of Iron shipwoulding. ding. The economy and abundance of fron, coal, and or here make this a desirable point for the prosecu of this business. Note that the second second second second to the second second second second second second second to the second second second second second second second to the second second second second second second second
second to the second BUTT PATTERNS AND MACHINERY ## RING SPINNING IMPROVED SPINDLES-5,000 revolutions per minute Bobbin driven positive. BRIDESBURG MANUFAC-TURING COMPANY, Philadelphia, Pa. O. P. LEWIS, CONSULTING ENGINEER AND HYDRAULICIAN, EXPERT IN PATENT CAUSES. Opintons given on infringements, merits of machines and inventions. Detroit, Mich. GREAT REDUCTION IN PRICES OF LE COUNT'S PATENT HOLLOW LATTIE DOGS, and his Machinist Clamps of both 1 set of 8 dogs, from % to 2 inch, \$6 50. His expanding Mandril is a first class tool, which has no been needed by every Machinist. and for latest circular, South Norwalk, Conn. W. LE COUNT, South Norwalk, Conn. ARE CHANCE FOR MANUFACTURERS FOOT SAWING MACHINE—best out— cuts very fast, as smooth as a plane. S. C. HILLS, it courtlands Street, New York. 1823. JUBILEE! 1873. New York Observer. The Great American Family Newspaper. The Great American Family Newspaper. YEAR WITH THE JUBILEE YEAR BOOK. SIDNEY E. MORSE & CO., 37 Park Row, New York. 27 SEND YOR A SAMPLE COPY. 22 HARTFORD Steam Boiler INSPECTION & INSURANCE CO. ISSUES POLICIES OF INSURANCE, after a careful inspection of the Boilers, covering all loss or damage to Boilers, Buildings, and Machinery STEAM BOILER EXPLOSIONS STEAM BOILERS, STATIONARY, MARINE, & LOCOMOTIVE. Full information concerning the plan of the Company's perations can be obtained at the HOME OFFICE, in Hartford, Conn. THOS. S. CUNNINGHAM, Manager. R. K. McMURRAY, Inspector. The Weekly Sun. ONLY \$1 A YEAR. 8 PAGES. The Best Family Paper. The Best Agricultural Paper. The Best Political Paper. The Best Fashion Reports. The Best Fashion Reports. The Best Cattle Market Reports. The Best Cattle Market Reports. The Best Paper Every Way. THE WEEKLY NEW YORK SUN. Eight pages, 56 columns. 81 a year, or less than 2 cents a number. Send your dollar. Address THE SUN, New York City. Machinery. NO. 348 BROADWAY, NEW YORK. STEAM PUMPING MACHINERY INDEPENDENT BOILER FEEDER. Works Hot and Cold Water. (LARGE AND SPLENDID Illustrated Catalogue, Sent Free on Application. Cope & Maxwell Man'fg Company, 118, 120 & 122 East Second St., CINCIUNATI, O. THE EAGLE FOOT LATHE for Amateurs Iron City and Siberian Iron Works. ROGERS & BURCHFIELD, MANUFACTURERS OF Refined Charcoal and Best Bloom Sheet Iron, Brands Apollo and Siberian, Specialties: Stamping, Button, PROTECTION AGAINST FIRE. HALL BROTHERS Are prepared to introduce their "System of Sprinklers" into Mills, Factories, &c., at short notice. Call and see a practical operation of same at their works, 36 CHARDON STREET, BOSTON. Grant's Bolt Cutter & Drill Combined Circulars. WILEY & HORELL, Maker 50 MACHINISTS used to first class work at based, reliable men can find good pay and steady work at Passate, N. J. Address NEW YORK STEAM ENGINE COMPANY, Passate, N. J. 12 Samples sent by mail for 50 cts., that retail quick for \$10. R. L. WOLCOTT, IN Chatham Equare, New York. CINCINNATI BRASS WORKS-Engineer and Steam-fitters' Brass Work. Best quality. Sen for Catalogue. F. LUNKENHEIMER, Prop. BURDON IRON WORKS,—Manufactu NVENTORS' NATIONAL UNION, GIBBS & CO., 178 Broadway, New York, and on Commission. Send for Circular. WHALEN TURBINE No risks to purcha Niagara Steam Pump. CHAS. B. HARDICK, 22 Adams et., Brooklyn, N. Y P. BLAISDELL & Co., MANUFACTURERS OF FIRST CLAS MACHINISTS TOOLS, Send for Circular Jackson st., Worcester, Mass. Milling Machines. M. MAYO'S BOLT CUTTER—Patented in 1867-Hevised and improved in 1871 and 1872 for Illustrated Circular, Cincinnati, Ohio. Free, Free! SEND FOR A SPECIMEN COPY in Her Own Flower Gardener. By Dalsey Eyebright ook on Flower and Out-door Gardening for Ladies. Price, 500 Illustrated Prospectus and Premium List of all the above free on HENRY T. WILLIAMS, Proprietor, 5 Beekman Street, New York, Best Smutter in America. pay you. Address M. DEAL & CO., Bucyrus, Ohio, Manufacturers BUY BARBER'S BIT BRACE. EDWARD II. HOSKIN, CONSULTING AND ANALYTICAL CHEMIST, Lowell, Mass. Chemistry as applied to the Arts, Manufacturers an Medicine. Turbine Water Wheel is Cheap, simple, strong and durable; upon a test has yielded over 85 per cent at full gate, and over 78 per cent at eight-tenths gate. Send for circular to T. H. RISDON & CO., Mount Holly, New Jersey. NEW PATTERNS. Machinists' Tools-all sizes-at low prices. E. & E. J. GOULD, 97 to 113 N. J. R. R. Ave., Newark, N. J. Foot Lathes & Power Lathes With and without Back Gears. Also With and without Back Gears. Also, SPECIAL MACHINERY MURRAY BACON, 623 Commerce st., Philadelphia. TO WATER WHEEL INVENTORS AND MAKERS. Free tests—for 4 inch wheels—water caught in tank. Send for circular. L. F. HUDSON, P. O. Box 3216, Cincinnati, Ohio Machinery, Machinists' Tools. try, manufactured by NEW YORK STEAM ENGINE COMPANY, 121 Chambers & 103 Reade Streets, New York. Cold Rolled Shafting. Also, Pat. Coupling and Self-oiling adjustab GEORGE PLACE & CO., 121 Chambers & 101 Reads Streets, New York. Sturtevant Blowers. Of every size and description, constantly on hand. GEORGE PLACE & CO., 121 Chambers & 103 Beade Streets, New York. Pat. Punching Presses For Railway Shopa, Agricultural Machine Shops, Roll Makers, Tinners, Brass Manufacturers, Silversmiths, & Warranted the best produced. Send for Catalogue, &c. NEW YORK STEAM ENGINE CO., 12: Chambers & 108 Roade \$5.40 \$20 per day! Agents wanted All classes of working per-toris for unit their spare moments or all the time than at anything size. Particulars free. Address O. Bilmon & Co., Portland, Malice. MACHINERY, send for Circular, Crias, FLACE & CO., @ Vesey st., New York. 832. SCHENCK'S PATENT. 1871 WOODWORTH PLANERS WOOD-WORKING MACHINERY GEN erally. Specialties, Woodworth Pianers and Rich ardson's Patent Improved Tenon Machines. Nos. 24 and Scentral, corner Union st., Worcester, Mass. WITHERBY RUGG & RICHARDSON. BEAMS & GIEDERS THE Union Iron Mills, Pittsburgh, The attention of Engineers and Architects is to our improved Wrought-Iron Beams and Girders inted), in which the compound welds between the and flanges, which have proved so objectionable is old mode of manufacturing, are entirely avoided, w Andrew's Patents. seless, Friction Grooved, or Geared Hoisters, suited to every want. ty Store Elevators. Prevent Accident, if tope, Belt, and Engine break. ke-Burning Safety Boilers, llating Engines, Double and Single, 1-2 to 00-Horse power. Oscillating Engines, Double and Single, 100-Horse power. 100-Horse power. 100 to 100,000 Gallous per Minute, Best Pumps in the World, pass Mud, Sand, Gravel, Coal, Grain, etc., without injury. All Light, Simple, Durable, and Economical. Send for Circulars. WM. D. ANDREWS & BRO., 414 Water Street, New York. 100 YEAR ALMANAC. FOR 50 CENTS we send PostPAID an Almanac giving every Year, Month, Week and Day of the Century, also a Pocket Calendar for ay of the Century, also a Pocket Calendar for inducements to Agents. Address GEORGE A. HEARD & CO., Boston, Mass WANTED AGENTS to sell articles needed by every one. PLUMB & CO., Philadelphia, Pa e Simplest, Cheapest, and Beat in use! Has but one side! A Child can Hun it. AGENTS WANTED IN EVENT WIN. Send for circular and Sample Stocking, to HINKLEY KNITTING MACH. CO., Bath, Mc. WOODBURY'S PATENT Planing and Matching WOOD AND IRON Working Machinery Shaping Machines, Cabinet Makers' Machinery, Shaping Machines, Band Saws, Shingle and Stave Mackinery, Band Saws, Cable and Sheaves for transmitting power Engine Lathes, Upright Brills, Key Seat Machines, the Illus, Catl. free. T. R. Halley & Vall., Lockport, N. Y. RICHARDSON, MERIAM & CO. PORTABLE STEAM ENGINES, COMBIN Reynolds' WOODWARD'S COUNTRY HOMES. ORANGE JUDD & CO., PURISHIES, 35 Broadway, N. You FF Send for Catalogue of all hood on Architecture, Agriculture Sports and the He SCIENTIFIC AMERICAN. The Best Mechanical Paper in the World A year's numbers contain over 800 pages and several hundred engravings of new machines, useful and novel inventions, manufacturing establishments, tools, and The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arts, Manufactures, Inventions, Agriculture, Commerce, and the industrial pursuits generally, and is valuable and instruc- To the Mechanic and Manufacturer! No person engaged in any of the mechanical pursuits hould think of doing without the Scientific Ameri-an. Every number contains from six to ten engravings new machines and inventions which cannot be found Chemists, Architects, Millwrights and Farmes The SCIENTIFIC AMERICAN will be found a most seful; urnal to them. All the new discoveries in the clence of chemistry are given in its columns; and the netrests of the architect and carpenter are not over booked, all the new inventions and discoveries appear shall continue to transfer to our columns copious ex-tracts, from these journals, of whatever we may deem of nterest to our readers. TERMS. Address all letters and make all Post Office orders of MUNN & CO., 37 PARK ROW NEW YORK. #### Advertisements. Ascertisements will be admitted on this page at the rate of \$1.00 per line for each insertion. Engreings may head aftertisements at the same rate ver line by measurement, as the letter-press. CHEAP, durable, and light permanent IRON STEAMSHIP BUILDERS. # Neafie & Levy, PENN WORKS, MARINE ENGINES, BOILERS, AND BUILDERS OF COMPOUND ENGINES, PHILADELPHIA, PA. ATER FRONT FOR FACTORIES, ROPE-WALKS, LUMBER-YARDS, &c.—LOTS SALE OR LEASE. Blocks of Lots on Newtown k, near East River, adjoining New York and Brook-litles: prices \$30 to \$1.00; terms easy. Apply to SCHIEFFELIN, No. 15 East 25th St., New York. KEEP YOUR BOILERS CLEAN. prevents and removes scale in Security and remove scale in Security and removes scale in Security and remove Securit # PATENT SIXTH EDITION FIFTIETH THOUSAND MORRIS, TASKER & CO., MANUFACTURERS OF AMERICAN CHARCOAL IRON # Boiler Tubes. WROUGHT-IRON TUBES AND FITTINGS, FOR GAS, STEAM, WATER, AND OIL. The Steam and Gas Fitters' Supplies, Machinery for oal Gas Works, &c., &c. NO. 15 GOLD ST., NEW YORK.
WIRE ROPE. JOHN A. ROEBLING'SSONS. MANUFACTURERS, TRENTON, N. J. FOR Inclined Planes, Standing Ship Rigging, Bridges, Ferries, Stays, or Guys on Derricks & Granes, Tiller Ropes, Sash Cords of Copper and Iron, Lighting, Conductors of Copper. Special attention given to holsing rope of all kinds for Mines and Elevators. Apply for circular, giving price and other information. Send for pamphlet on Transmission of Power by Wire Ropes. A arge stock constantly on hand at New York Warchouse, No. 117 Liberty street. American Saw Co. No. 1 Ferry Street, corner Gold Street, New York. Patent Movable Toothed CIRCULAR SAWS, Patent Perforated Circular, Mill, Cross-cut Saws. EB Bend for Descriptive Pamphlet. ONE POUND OF TEETH SAWS WORKS EMERSON. SAW 2,000,000 FEET OF LUMBER. ## A. S. CAMERON & CO., ENGINEERS, Works, foot of East 23d Street, New York City. Adapted to every Possible Duty.—Send for a Price List. Scientific Investigations and the Entertainment of amily Circle. Blustrated Price List sent free or cation. MCALLISTER, Optician,49 Nassau St., N.Y. 5000 AGENTS WANTED. — Samples sent free by mail, with terms to clear from \$3 to \$10 per day. Address N. H. WHITE, Newark, N. J. Damper Reg. Pat. Gage Cocks. Water Feed Reg's. end for Circulars. MURRILL & KEIZER, Balt., Md. B EACH'S Scroll Sawing Machine, Improved guaranteed the cheapest and best in use. Thirty list. Address H. L. BEACH, 90 Fulton St., New York. Malleable Iron. BADE MARK Union Stone Co., Patentees and Manufacturers of Emery Wheels & Emery Blocks In size and Form to Suit various Mechanical Trees MOND TOOLS, and WOOD'S PATENT KNIFE GEINDER, OTHER LONG KNIVES. OFFICE, 16 EXCHANGE STREET, BOSTON, MASS. BRANCH OFFICES SW. S. JATPOS, 93 Liberty Street, N. Y. EN Send for circular. MICROSCOPES, BUILDES Send stamp for our new illustrated catalogue, A. J. BICK ROSEWOOD, FRENCH WALNUT, SATIN WOOD, HUNGARIAN ASH, CEDAR, ETC VENEERS, BOARDS, AND PLANK. mill and Yard, 186 to 200 Lewis St., cor, 5th, E. R. Orders by mail promptly and faithfully executed. BY Send for Catalogue and Price List. MCNAB & HARLIN Manufacturing Co., Manufacturers of BRASS COCKS FOR STEAM, WATER AND GAS. WROUGHT IRON PIPE AND FITTINGS. Illustrated Catalogue and Price-list furnished on application. 26 JOHN STREET NEW YORK. #### TO INVENTORS. The "Consolidated Fruit Jar Company, Machinist's Tools, LUCIUS W. POND, MANUFACTURER, Warerooms, 35 Liberty Street, New York. A. C. STEBBINS, Agent. MERRILL'S DROP HAMMERS—Two, of Six Hundred pounds each. One has Guillards improvement. KELLY, HOWELL & LUDWIG, 917 Market Street, Philadelphia, Pa. # F. STURTEVAN PATENTEE AND SOLE MANUFACTURER OF PRESSURE BLOWERS & EXH 72 SUDBURY STREET BOSTON, MASS SEND FOR CATALOGUE, ILLUSTRATED WITH 4 O ENGRAVINGS FIRST PREMIUM (MEDAL) AWARDED IN 1870, AND ENDORSED BY CERTIFI-CATE FROM THE AMERICAN INSTI-TUTE IN 1871, AS THE BEST ARTICLE IN THE MARKET. ASBESTOS ROOF COATING, ASBESTOS BOLLER FELTING, ROOFING AND SHEATHING FELTS, AS-BESTOS, ASPHALTUM, ASBESTOS BOARD, ASBES-TOS PAPER, &c. Send for Descriptive Pamphlets, Price Lists, Terms to Dealers, etc. { Established | New Offices, 87 MAIDEN LANE, cor (in 1858.) GOLD STREET, New York. EDITED BY P.H. VANDEWEYDE M.D SUBSCRIPTION \$2 A YEAR 4 vols. \$5. 5 vols. \$6 37 PARK ROW NY. SEND FOR SPECIMEN COPY. PORTLAND CEMENT OF the well known manufacture of John Bazley White & Brothers, London, for sale by JAMES BRAND, 55 CHIF St., N. Y. SUPER-HEATERS Save fuel, and supply DRY steam. Easily attached any boiler. HENRY W. BULKLEY, Engineer. 98 Liberty St., New York Pyrometers. For Ovens, Botter flues, Blast furnaces, Super-Heated Steam, Oil Stills, &c. Address HENRY W. BULKLEY, 98 Liberty St., New York R ANSOM SYPHON CONDENSER perfects and maintains vacuum on Steam Engines at cost of vr cent its value, and by its use Vacuum Fans are lith full vacuum without Air Pump. Send to WM. S. 51 Chardon St., Boston, for a personal call, or mpany, at Buffalo, N. Y., for a circular. Wright's Double-Acting Bucket- Made by the Valley Machine Co. EASTHAMPTON, Mass. # Extraordinary EXPOSITION BUILDING, CINCINNATI, October 2, 1872. VE, THE UNDERSIGNED, BEAR WITNESS to the fact that a PULLEY THIRTY (20) INCHES IN DIAMETER AND TEN GO, INCHES FACE - IN FORTY-TWO (42) MINUTES, BY THE BOIL AND TURNING MACHINE exhibited in the Expo-by the # Niles Tool Works, Cincinnati, Unio irpose. nat this performance cannot be equalled by OF IGACHINE. ELAMATER, DELAMATER IRON WORRS, N. Y. RIPLEY, OF HARDBEN'S RIPLEY, N. Y. CITY. DOANE, PREST. J. A. FAY & Co., CINCINNATI. MITH, OF LANE & BODLEY, CINCINNATI, OHIO, I, LANE & DYER MACHINE CO., HAMILTON, JOHN WEDGE, OF GRIFFITH & WEDGE, ZANES- TODD & RAFFERTY, Manufacturers of steam Engines, Bollers, Flax, Hemp, Tow Baggings, Rope and Oakum Machinery. Steam Pumps and Governors always on hand. Also Agents for the New Haven Manufacturing Co.'s Machinists' Tools. BOX 778, New York city. # THE TANITE CO.'S CHATATING MACHINES Are kept in Stock, and sold at Factory Prices, by CHAMPLIN & ROGERS, 125 Fifth Avenue, Chicago NILES TOOL WORKS, Cincinnati; C. E. INLOES & CO. Baltimore-J. F. JEWETT & CO., Mobile; HAWKINS & DODGE, Newark, N. J., and E. ANDREWS, Williamsport, Pa. C. BLACK & CO., Hamilton, Ont., Canada also keep these goods. THE TANITE CO. have no Agencies in New York or New England. THE TANITE CO. do not Exhibit or Compete at any Fair in the United States this Year. # THE TANITE CO.'S # PHILADELPHIA PA. IMPROVED CAST IRON SEND FOR CIRCULAR G EORGE PAGE & CO., Manufacturers of Portable and Stationary STEAM ENGINES AND BOILERS; Patent Circular, Gang, Mulay, and Sash SAW MILLS, with OUTFITS COMPLETE, # Diamond-Pointed THE adoption of new and improved applica HE adoption of new and the constraint of the celebrated Leschot's patent, have made see drills more fully adaptable to every variety of eK DRILLING. Their unequalled efficiency and nomy are acknowledged, both in this country and rope. The Drills are built of various sizes and patents; with AND WITHOUT BOILERS and bore at a fform rate, of THREE TO FIVE INCHES PER MINE in hard rock. They are adapted to CHANNELLING, ADDING, SHAFTING, TUNNELLING, and open cut with also, to DEEP BORING FOR TESTING THE LUCE OF MINES AND QUARRIES. TEST CORM ken out, showing the character of mines at any depth, and either with steam or compressed air. Simple an one of the control AMERICAN DIAMOND DRILL CO., No. 61 Liberty St., New York Boilers & Pipes covered with "ASBESTOS FELTING;" saves 25 per cent in fuel, Send for circulars. Asbestos Felting Co., Nos. 316, 318, 320, 322, Front St., N. Y. I SAAC S. CASSIN, Engineer, late Chief Engineer of the Philadelphia Water Works, No. 431 Racc St., Philadelphia, Pa. Water Works constructed, Survers and Estimates made, Drawings and Specifications, and all kinds of Hydraulic Machinery and materials furnished. Working Models And Experimental Machinery, Metal, or Wood, made to rider by J. F. WERNER, 62 Center st., N. Y. TRON PLANERS, ENGINE LATHES, Drills, and other Machinists Tools, of superior quality, on hand, and fluishing. For sale low. For Description and Price address NEW HAVEN MANUFACTURING CO., New Haven, Conn. MAGIC LANTERNS K IDDER'S PASTILES—A Sure Relief for Asthma. STOWELL & CO. Charlestown, Mass. N EW TOOL GRINDER—Indispensable for Manf'rs of Passenger Cars, Sash, Blinds, Mouldings o. Address AM, TWIST DRILL CO Woonsocket, R, 1 THE "Scientific American" is printed with CHAS, ENEU JOHNSON & CO.'S INE. Tenth and Lombard ste., Philadelphia and 29 Gold st., New York