ГЛАВА ВТОРАЯ.

Троякое составление данных чисел,
или о трех явных — открытых равенствах, именуемых тожествами.

ОТДЫХНЕНИЕ I.

СЛОЖЕНИЕ.

а.) Общия изслѣдованія.

§ 6.

Изъ §§ 1, 2 и 3, видѣли какимъ образомъ раскладывается по частямъ изслѣдируемый мѣрой предметъ, и какъ сіи части выражаются знаками: позже обратно соединимъ первый, то безъ сомнѣнія, по § 1, слѣд. 4,
составится цѣлый предметъ; если же соединимъ ихъ выражениіе или цифры, то—числовая его величина:
(слѣдствие 5). Соединеніе послѣднихъ называется сложеніемъ и изображается слѣдующимъ образомъ: 5 съ 4 очевидно составляютъ число 9, но чтобы неписать
5 съ 4 = 9 (§ 4, 111);
то вместо слова съ, вносятъ знакъ (+) плюсъ (значитъ больше) и чрезъ то общая форма сложенія принимаетъ слѣдующій видъ:
5 + 4 = 9.
Действительность сего равенства, доказывается расположением 5 и 4 на их единицы; а именно:

$$5 + 4 = (1 + 1 + 1 + 1 + 1) + (1 + 1 + 1 + 1) = 9,$$

следовательно

$$5 + 4 = 9;$$
что выговаривается так: 9 равно 5 плюс 4, или 5 с 4 равно 9. Сей вывод или результат сложения называется суммой; т. е. 9 есть сумма чисел 5 и 4, которые именуются слагаемыми. И так сумма равна всем слагаемым, взятым вместе. Отсюда следует:

1. Совокупить или сложить несколько чисел, значит составить из них общее число, которое бы заключало в себе столько единиц, сколько их находится во всех слагаемых, отдельно рассматриваемых; сле- дует, сложение есть объединение многих чисел, в одно общее и вспоми ом вся равно.

2. Выражение 9 = 5 + 4 вообще именуется открытым равенством или тожеством первого вида, в котором, 9 есть первая часть, а 5 + 4 вторая; сле- дует, тожество состоит из двух частей, совершенно между собою равных. И так сумма без слагаемых, и слагаемая без суммы не существует; понятие одного нераздельно слито с понятием других, так что без равенства нет ни суммы, ни слагаемых.

3. Последуя сумма есть следствие слагаемых, то первая должна быть однородна с последними.

4. Ни с чем та.к хорошо нельзя сравнить слагаемых и суммы, или вообще говоря тожества, какъ съ вписами, въ равновесие приведенными, чрезъ положение на обь чаши равныхъ тяжестей, изъ коихъ на одной будетъ она раздроб- ленною, а на другой цѣлою: если на одну чашу, такимъ
образову уравновешенную, еще прибавим какую либо тяжесть, или несколько разъ одну прибавим, что значит увеличить в несколько разъ или: если изъ одной часни отнимем также тяжесть, или несколько разъ отнимем одну, что значит уменьшить въ несколько разъ, то и на другой часны тоже надлежит здѣлать, для того, чтобы равновѣсіо непарушить. Такое же свойство имѣет и тожество или открытое равенство, въ умственномъ, отвлеченномъ значеніи. Такъ, если $9 = 5 + 4$, то и $9 + 3 = (5 + 4) + 3$. Ибо 9, принявъ 3, хотя и удалилось отъ $5 + 4$ на три степени, но $5 + 4$, равное 9, принявъ тоже 3 опять приблизилось на тѣ же три степени; то же выйдетъ, если объ части $9 = 5 + 4$ увеличивимъ въ несколько разъ; или: если изъ двухъ частей $9 = 5 + 4$ отнимемъ 3, или въ несколько разъ уменьшимъ 3-ми. Вообще равныя количества после равныхъ измененій, каковбы сии изменения не были, останутся всегда равныя между собою. Но равныя количества, послѣ разныхъ измененій, не бывают равными; а потому отсюда новая аксіома: если къ двухъ равныхъ числахъ придаются неравныя, или первая изъ нихъ разъ увеличится на неравныя степени, то тотъ выводъ будетъ больше, въ которомъ придаваемое больше. Если же, изъ двухъ равныхъ чиселъ отнимется по неравному, или оба равныя въ несколько разъ уменьшится на неравныя степени, то на оборотъ, тотъ выводъ будетъ больше, въ которомъ отнимаемое меньше. Для яснѣйшаго уразумѣнія этихъ истины, должно обратиться къ всѣмъ и съ ними здѣлать эти изменения. И обратно, если къ неравнымъ числахъ придастся по рав-
ному; или первый увеличивается на равные степени; или, если из двух неравных — отнимается по равному; или оба неравны уменьшаются на равные степени; то тот вывод будет больше, в котором уже изменивающееся больше: 5<9, слъд. 5+3<9+3 и проч. Ибо число 5 принято 3, хотя и приближается к 9; но в то же время 9, приняло то же 3, от него удаляется; и проч. Здесь 5 и 9 суть изменяющиеся и т. д.

В этих трех аксиомах заключается главное основание всех математических исследований.

5. Последу в приведенном тожестве результат выведет 9 равен 5+4 или 2+3+4, слъд.

из 9=5+4=2+3+4

получаем

\[
\begin{align*}
9 &> \{2\} > 3 \{2+4=6\} > 4 \{3+4=7\}
\end{align*}
\]

т. е. сумма больше каждого слагаемого, количество прочих слагаемых; и обратно, слагаемых тьм ближе подходят к сумме своей, чем их будет взято больше.

Замечание 1. Нуль есть ньют, след. сколько бы их неслагалось вьест, не могут произвести чего либо, посему и число не увеличивается, если к нему придается, (но не принимается) ньсколько нулей. Так 0+0+0=0, 5+0=5; но если к 5 в правой руки приписать 0, то оно будет не 5 а 50.
2). Основанием сложения всех данных чисел служит сумма первых десяти знаков, а потому начинаящее должен сперва выучить ее твердо. Она предлагается в следующих столбцах, и преимущественно полезна для вычитания.

\[
\begin{array}{cccccccc}
0+0=0 & 1+3=4 & 2+7=9 & 4+5=9 & 6+7=13 \\
0+1=1 & 1+4=5 & 2+8=10 & 4+6=10 & 6+8=14 \\
0+2=2 & 1+5=6 & 2+9=11 & 4+7=11 & 6+9=15 \\
0+3=3 & 1+6=7 & 3+3=6 & 4+8=12 & 7+7=14 \\
0+4=4 & 1+7=8 & 3+4=7 & 4+9=13 & 7+8=15 \\
0+5=5 & 1+8=9 & 3+5=8 & 5+5=10 & 7+9=16 \\
0+6=6 & 1+9=10 & 3+6=9 & 5+6=11 & 8+8=16 \\
0+7=7 & 2+2=4 & 3+7=10 & 5+7=12 & 8+9=17 \\
0+8=8 & 2+3=5 & 3+8=11 & 5+8=13 & 9+9=18 \\
0+9=9 & 2+4=6 & 3+9=12 & 5+9=14 \\
1+1=2 & 2+5=7 & 4+4=8 & 6+6=12 \\
1+2=3 & 2+6=8 & & & \\
\end{array}
\]

b.) Частные изслеждования.

§ 7.

Вычисление суммы. Совокупить сложных числа значит сосчитать сколько в них содержится вообще чисел: единицы первого порядка, второго, третьего и т. д. След. стоит только соединять одинакие роды чисел порознь. А как при этом соединении чисел единицы первого порядка могут давать число десятка; числа десятка—число сотни; числа сотни—число тысячи и т. д., то от чисел единицы отсчитывают число десятка, от числа десятка—число сотни, от числа сотни—число тысячи и т. д. и придают их к данным.
числамъ десятка, сотни, тысячи и проч. вообще къ однороднымъ. Вотъ примѣръ, чему равняется: 509068 +748+7482 +800090+8000+3600 459+3333 +555+777?
Сосчитавши числа единицы первого порядка получаемъ 34 т. е. 4 единицы и 3 десятка, которая придаю къ десяткамъ и нахожу 44 т. е. 4 десятка и 4 сотни; по- следня отнеси къ сотнямъ составляю 27 т. е. 7 сотень и двѣ тысячи; придавши 2 тысяч. къ тысячамъ составляю 34 т. е. 4 тысячи и три десятка оныхъ; слѣд. цифру 3 надобно отнести къ десяткамъ тысячъ,— выдетъ только 3; наконецъ сотень тысячи выходить 9, а миллионовъ—4. Вообще, десятки выходящія при сложении въ суммахъ каждого порядка единицъ, относятся къ последующему высшему порядку; и такъ 4934744 равно искомой суммѣ.
Для большой удобности слагаемыя числа подписывають одно подъ другимъ, располагая единицы, десятки, сотни, тысячи и т. д. въ однихъ столбцахъ; или иначе, чтобъ единицы соответствовали единицамъ, десятки—десяткамъ, сотни—сотнямъ и проч; и такое расположение слагаемыхъ общеупотребительно. Напримѣръ, чтобъ сложить 502+709009+9008+72030456 то пишутъ такъ:

\[
\begin{array}{c}
502 \\
709009 \\
9008 \\
72030456 \\
72,748,975.
\end{array}
\]
Если бы сумма цыфръ каждого столбца, непревышала
числа 9, то можно было бы начинать сложение с числа единицы высшего разряда, переходя к сложению числа низшего; в противном же случае такое действие—весьма затруднительно; потому что, производя сложение с левой руки, часто должны были бы возвращаться назад, для повреждения написанной пред той цифрой и для увеличения ее столькими единицами, сколько следующий разряд имеет десятков и единиц; почему для предосторожности всегда лучше начинать действие с правой, а потому для сложения общее правило: должно расположить данные слагаемые числа так, чтобы однородные были в одной столбцах, потом проведша под ними черту; в этом состоит приготовление, слагать однородные, стоящие в первом с правой стороны столбце и подчеркнуть против одного писать сумму найденных цифр, если она не превышает 9; иначе же число десятков должно удерживать, для прибавления к непосредственно—однородным следующего столбца. Поступая таким образом со всеми разрядами определенной требуемую сумму.

§ 8.

Всё задачи на сложение разрешаются скрывающимися в них смыслом: чем больше, тем больше.
Вот пример:

1. Купец продал товара в первой день на 3460 руб., во второй на 10,790 руб., в третий на 286 руб. Спрашивают, какую сумму выручил в три дня?
Решение. Небольшое внимание нужно, дабы усмо-
треть, что здесь требуется определить сумму всего до-
хода, который будет тем больше, чем больше частных
доходов, а потому вычисление:

3460
10790
+286
14536 руб. выручил в три дня.

Примеч. Подробное изложение вопросов, как на
это, так и на все последующие действия, читай в со-
борании арифметических задач, составленном Депар-
таментом Народного Просвещения, для руководства
Уездных Училищ.

ОТДЕЛЕНИЕ II.

УМНОЖЕНИЕ.

а.) Общие изчисления.

§ 9.

Когда требуется складывать числа равные, какъ:
2+2+2+2=8, то сей видъ сложения называется умно-
жением и выражается сокращенно такт:
2·4=8, или 2·4=8.

Числа 2 и 4 вообще называются факторами или про-
изводителями; данное слагаемое 2 — множимым; 4, означающее число равных слагаемых — множителям, а результат или вывод 8 — произведением. Из сего слѣдует, что произведение безъ производителей и производители безъ произведений невозможны; понятіе одного слито съ понятіемъ другихъ; слѣд. выраженіе умноженія есть тожество втораго вида, которое разматривая подробнѣ, находимъ, что число повтореній одного производителя въ своемъ произведеніи означается другимъ производителямъ. Такъ въ приведенномъ тожествѣ 2.4=8 производитель 2 показываетъ, что другой производитель 4 долженъ повториться два раза, дабы составить 8; также 4 означаетъ, что 2 повторяется четыре раза, чтобъ произвести тоже 8; такъ что вообще произведение противъ одного изъ своихъ производителей во столько разъ больше, сколько въ другомъ производитель заключается единицъ; и обратно, данный производитель во столько разъ меньше своего произведения, сколько содержится единицъ въ другомъ данномъ производителя; словомъ: произведение равно множимому увеличенному; (умноженному) множителемъ.

Почему при изображеніи открытыхъ равенствъ: 2.4=8, или 2×4=8 говорятъ: 2 взятое 4 раза равно 8; (ибо равныхъ слагаемыхъ 4); или четырежды 2 равно 8; или 2 помноженное на 4 равно 8.

Откуда слѣдуетъ:

1. Поскольку произведение составляетъ изъ равныхъ слагаемыхъ; то первое, какъ слѣдствіе вторыхъ, дол-
жно быть однородно съ однимъ изъ производи-
tелей, который есть собственно множимое и разно-
родно съ другимъ—съ множителемъ; слѣд. множи-
tель есть число чisto отвлеченнаго, множимое же, и про-
изведение—выражение количествъ; изъ коихъ первое,
какъ данная мѣра, а второе, какъ данное мѣримое (§ 1 и 2.).

II. Въ умноженіи даются два числа 2 и 4 и требуется
составить третье 8 такъ какъ одно данное, напр. 4 со-
ставлено изъ единицъ; ибо умножить число 2 на 4 зна-
чить 2 повторить 4 раза; для составленія же 4 тоже
надобно единицу повторить 4 раза и обратно чтобъ ум-
ножить 4 на 2, то 4 повторяю 2 раза; и для составле-
нія 2 единицу повторю два раза.

III. Помножить одно число на другое, значитъ сложить первое столько разъ, сколько въ второмъ единицъ
безъ одной; ибо

\[
\begin{array}{cccccccc}
2 & + & 2 & + & 2 & + & 2 & = & 8 \\
1 & & 2 & & 3 & &
\end{array}
\]

IV. Произведеніе неперемѣняется отъ перемѣны порядка производителей; т. е. когда множимое сдѣляется множителемъ, а множитель множимымъ произведение остается постояннымъ. Ибо, число повтореній одного производителя въ своемъ произведении означается другимъ производителемъ (§ 9).
Такъ, если надобно 5×3, то собственно должно 5 единицъ повторить 3 раза т. е. написать:

\[
\begin{array}{cccccc}
1 & + & 1 & + & 1 & + & 1 \\
1 & + & 1 & + & 1 & + & 1 \\
1 & + & 1 & + & 1 & + & 1 \\
\end{array}
\]
и потом сложить; выдет 3+3+3+3=3 или 3. 5. И так 5.3=3.5;—заключение справедливо.

V. Предлагаемая ниже сего таблица, которой составлене приписываются Пифагору одному из Греческих Философов, содержит произведения первых десяти чисел, взаимно перемноженных и служит основанием для находления произведений всех данных чисел.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0=0</td>
<td>1.8=8</td>
<td>3.9=27</td>
<td>7.7=49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0=0</td>
<td>1.9=9</td>
<td>4.4=16</td>
<td>7.8=56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0=0</td>
<td>2.2=4</td>
<td>4.8=20</td>
<td>7.9=63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0=0</td>
<td>2.3=6</td>
<td>4.6=24</td>
<td>8.8=64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0=0</td>
<td>2.4=8</td>
<td>4.7=28</td>
<td>8.9=72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0=0</td>
<td>2.5=10</td>
<td>4.8=32</td>
<td>9.9=81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0=0</td>
<td>2.6=12</td>
<td>4.9=36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0=0</td>
<td>2.7=14</td>
<td>5.5=25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0=0</td>
<td>2.8=16</td>
<td>5.6=30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0=0</td>
<td>2.9=18</td>
<td>5.7=35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1=1</td>
<td>3.3=9</td>
<td>5.8=40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2=2</td>
<td>3.4=12</td>
<td>5.9=45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3=3</td>
<td>3.5=15</td>
<td>6.6=36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4=4</td>
<td>3.6=18</td>
<td>6.7=42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5=5</td>
<td>3.7=21</td>
<td>6.8=48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6=6</td>
<td>3.8=24</td>
<td>6.9=54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ 10.

Весьма продолжительно находить произведение большего числа, складывая множимое столько разъ, сколько во множител единиц безъ одной, какъ требуетъ определение § 10 членъ. III; для того предлагаемъ сокращенныйный способъ, на основаніи (§ 9, V). Онъ состоить изъ двухъ случаевъ: или когда данное сложное число
помножается на простую цифру; или, когда сложное—
на сложное. Но предварительно замечим:

I. Изъ § 4, III, видим, что десяток повторенный
10 разъ составляет сотню; слѣд. и выражение десятка
повторенное десять же разъ производить 100 или 10.10=
100. Также 10 сотень составляют тысячу слѣд. и 100.10=
1000 и т. д. Изъ чего слѣдуетъ, что если единицы раз-
ныхъ порядковъ перемножаются между собою, то
въ произведеніи получится выраженіе единицы
высшаго порядка, содержащей нули всѣхъ низшихъ.

II. На основаніи сего, чтобъ 1000 умножить напр:
числомъ 7, то по § 7 выдетъ 7000; ибо

1000. 7 = 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000
1000=7000; также (по § 9, IV.)

100. 375=375. 100=37500.

Вообще, если число должно увеличить въ 10,000,1000.....разъ, то въ произведеніи пишется
множимое и при немъ нули множителя. Посему
и обратно: число, имѣющее на концы нули можно
принимать за произведеніе, коею однимъ произво-
dитель ровенъ числу, а другой единицъ съ нуля-
ми произведенія. Такъ 57000 все тоже что 57.1000.

III. Послѣ сего легко найти правила для перемноже-
нія чиселъ, имѣющихъ на концахъ нули. Напр., если
требуется помножить 300. 4, то по общимъ правиламъ
имѣемъ

300.4=300+300+300+300=1200

но 1200=12.100, а 12=3.4.
Следствием 3.4 вместо 12 получим общее правило а):

$$300 \cdot 4 = 3.4 \cdot 100 = 1200$$

t. е. чтобы число выражаемое одной цифрой с нулями (как в нашем решении 300) умножить на число выражаемое одной же цифрой без нулей, (как 4), то должно только по Пифагоровой таблице, самым числа перемножить и к произведению приписать нули множимого. Сравнивая же найденное произведение 1200 с обоними производителями 300 и 4 находим, что оно содержит 12 сотен; в следствии того общее правило б): произведение, выходящее от числа высшего порядка на простые единицы, или обратно от простых единиц на число высшего порядка, всегда однородно с сим последним. Это заключение весьма важно, для умножения и деления сложных чисел.

IV. Если же требуется умножить 210.78500, то знаем, что 210 = 21. 10 и 78500 = 785.100; след.

$$210 \times 78500 = 21 \cdot 10 \cdot 785 \cdot 100.$$

Но порядок производителей можем перемножить без измнения произведения; посему

$$210 \times 78500 = 785 \cdot 21 \cdot 100 \cdot 10.$$

Последовательно

100. 10 = 1000, то

$$210 \times 78500 = (785 \times 21) \cdot 1000.$$

Вообще в произведении выходят столько нулей, сколько содержится их во множимом и мно-
Целые числа.
В чему для сокращения выкладок перемножают один числ, напр. 785 на 21 и к найденному уже произведению приписываю прямо известное число нулей; здесь их должно быть три.

V. Число знаков произведения зависит от крайних с левой руки цифр обоих производителей. Такк 500. 700 = 35000 а 1000. 100 = 10000.
Откуда заключаем, что число знаков произведения равно числу оных в обоих производителях, или одним меньше, если крайних с левой руки цифры такъ малы, что немогуть произвести десятка.

b). Частных изслѣдованій.

§ 11.

Вычисление произведений. Переи́демъ теперь к опредѣленію правилъ, для перемноженія самыхъ чиселъ.

Случай 1. Положимъ, что требуется 348×7. Разсуждаю: 348 тогда повторится 7 разъ или сложится шесть разъ, когда повторится столько же разъ каждое изъ членовъ 300+40+8, составляющихъ число 348 и потому пишу

\[
\begin{align*}
348. 7 = 300.7 + 40.7 + 8.7 = & \quad 300.7 \\
& \quad 40.7 \\
& \quad + 8.7 \\
\end{align*}
\]

Но по § 9, V; § 10, III вижу, что 8.7 = 56, 40.7 = 280; 300. 7 = 2100. Слѣд., соединивши эти частные произведения въ одно общее, получимъ

\[
\begin{align*}
300.7 = 2100 \\
40.7 = 280 \\
8.7 = 56 \\
\end{align*}
\]

\[
\begin{align*}
348.7 = 2436 \\
\end{align*}
\]
Изъ самого хода рѣшенія замѣчаемъ, что продолжительность выкладки можно сократить тѣмъ, если частнымъ произведенія будемъ соединять при самомъ умноженіи. Напр., помножая 8607 на 9 отъ повторенія единицъ нахожу 63, откуда, отдѣливъ 6 десятковъ придаю ихъ къ произведенію десятковъ, которое есть нуль; потомъ изъ 54—произведенія сотенъ, исключаю 5 тысячъ и прикладываю къ произведенію тысячь: 72 получаю 77. И такъ полное произведеніе будетъ:

8607.9—77463.

Изъ сихъ изслѣдований выводимъ общее правило: чтобъ данное сложное число помножить на множителя выраженія одною цифрой, то должно 1-е, помножать, начиная съ правой руки, отдѣльно кажду цифру множимаго; 2-е, выходя-щія отъ сего единицы писать по порядку одинъ за другими слѣдомъ, а десятки удерживать, для приложения ихъ къ каждому слѣдующему пом-ноженію высшей цифры; 3-е, что продолжать до крайняго съ львой руки знака, отъ котораго по-лученный десятокъ, уже неудерживать, а писать возлѣ послѣднихъ слѣда единицъ, то 4-е, найденный такимъ образомъ рядъ чиселъ и опредѣлить ис-комое произведеніе.

§ 12.

Случай II. Найти произведеніе 5673×9050.
Поелику число 5673 должно повторить 9000 + 50 раз, слѣд.

\[5673 \times 9050 = 5673 \times 50 + 5673 \times 9000 \ (§ \ 11) \]

по 5673, 50 = 283650
и 5673 \times 9000 = 51057000;

\[5673 \times 9050 = 51340650 \]

И такъ, при сложномь множимомъ и множитель должно помножить все множимое на каждую цифру множителя (§ II); назначить порядокъ каждого частнаго произведенія приписываніемъ къ нему столько нулей, сколько отъ той цифры множителя, которая произвела данное произведеніе, остается оныхъ во множитель справо (§ 10 IV); то сума частныхъ произведеній будетъ искомое произведеніе.

Для удобности все дѣлопроизводство располагается въ такомъ видѣ:

\[5673 \times 9050 = 283650 \]

\[51057000 \]

\[51340650 \]

Или подписываютъ множителя подъ множимымъ, ставя числа одинакаго рода въ одномъ столбцѣ и потомъ, подчеркнувъ, перемножаютъ по выведенному правилу:

\[900030 \]
\[7002003 \]
\[2700090 \]
\[1800060000 \]
\[630021000000 \]
\[6302012760090 \]
В практике для сокращения опускаются нули, поставленные с правой руки в частных произведениих, на десятки сотни и пр., а за то выступают каждым следующим частным произведением на одну цифру влево; т. е. первую цифру справа каждого частного произведения пишут под тем разрядом, к которому принадлежит цифра множителя (§ 10, III прав. б). Вот пример:

87468
5847
612276
349872
699744
437340
\[\underline{511423396} \]

Если множимое и множитель будут весьма многосложно и во множителев некоторых цифры повторяются, то для составления полного произведения, должно сперва составить, (для сокращения действий), частные произведения, через умножение множимого на разные цифры множителя, потом составить произведениям назначить их порядок и складывать. Напри мер, в \(563 \times 820391732 \) разных частных произведений шесть: от 1 \(\ldots \ldots \) 563; от 2 \(\ldots \ldots \) 1126; от 3 \(\ldots \ldots \) 1689; \(\ldots \ldots \) 3941; 8 \(\ldots \ldots \) 4504; \(\ldots \ldots \) 9 \(\ldots \ldots \) 5067, из которых составляют:
Сей пример заставляет спросить, не лучше ли бы помножить на множимое 563 весь множитель? Без сомнения гораздо удобнее, а при том и иметь на это и полное право; поелику знаем, что произведение перемножается, когда множимое заменяется множителем, а множитель множимым.

Примечание. Правила на решение практических вопросов и самой решений этих излагаются по тесной связи в §§ 54 и 55, вмезды с такими же на деление.
ОТДЫЛЕНИЕ III.

СТЕПЕНИ.

Общие исследования.

§ 13.

Умножение получает наименование возвышений в степень, если его составляют равные производители, как:

\[5 \cdot 5 = 25 \]
\[5 \cdot 5 \cdot 5 = 125 \]
\[5 \cdot 5 \cdot 5 \cdot 5 = 625 \]
\[5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 = 3125 \]
\[5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 = 15625 \]

Эти равенства суть тожества третьего вида. Откуда видно, что чем выше степень, темнее удобоче ея изображение в видь произведений; а какъ цифра 5 входитъ производителямъ 2, 3, 5.....разъ, по этой причинѣ, показанный видъ умножения сокращають такъ:

\[5^2 = 25 \]
\[5^3 = 125 \]
\[5^4 = 625 \]
\[5^5 = 3125 \]
\[5^6 = 15625 \]

т. е. вместо всѣхъ производителей беруть одинъ и надѣ нимъ съ правой руки ставлять цифру, показывающую ихъ число; почему 2, 3, 4, называютъ показателями; производитель 5 — основаниемъ, произведений 25, 125, 625—степенями. О изображений же

\[5^2 = 25 \]
\[5^3 = 125 \]
\[5^4 = 625 \]
говорят: 5, возвышенное до 2-хъ, равно 25; 8, возвышенное до трехъ, равно 125; 5, возвышенное до 4-хъ, равно 625 и т. д.; посему вообще

I. Степень равна основанию возвышенному до показателя.

II. Возвести же основание, значит помножить его на себя столько разъ, сколько единицъ содержит показатель безъ одной; ибо

\[5^3 = 5 \times 5 \times 5 = 125 \]

III. Степень составленная изъ двухъ равныхъ производителей имьетъ званіе квадратной, или просто квадраты, какъ 5,5 = 25; если изъ трехъ, то—подъ именемъ куба ея разумьютъ: 5,5,5 = 125; если изъ четырехъ—четвертою степенью, или биквадратомъ; и т. д.

Весьма полезно знать слѣдующую таблицу степеней квадратовъ и кубовъ первыхъ десяти знаковъ

0^2	0	0^3	0
1^2	1	1^3	1
2^2	4	2^3	8
3^2	9	3^3	27
4^2	16	4^3	64
5^2	25	5^3	125
6^2	36	6^3	216
7^2	49	7^3	343
8^2	64	8^3	512
9^2	81	9^3	729
Определение степени сложных чисел.

§ 14.

Вычисление степени данного числа на основании (§ 15) весьма легко: но при нем неполучим желаемых правил; для нашей же цели необходимо во первых рассмотреть степени оснований: 1, 10, 100, 1000, ... как предпоследов, между коими помещаются все числа (§ 3 чл. IV). Но по (§ 10, 1), находим, что

\[1^2 = 1 \]
\[10^2 = 10 \cdot 10 = 100 \]
\[100^2 = 100 \cdot 100 = 10000 \]
\[1000^2 = 1000 \cdot 1000 = 1,000,000 \text{ и проч.} \]

t. е. квадраты предпоследов чисел содержат вдвое больше нулей, чем их основания.

Далее, поелику куб есть составляет изю помножения квадрата на основание; квадрат же содержит двойное число нулей основания, а вообще в произведении столько нулей, сколько в обоих производителях; слд. в предпоследах, число нулей куба втрое больше числа нулей основания.

Так 10^3 = 10 \cdot 10 = 1000; 100^3 = 100 \cdot 100 = 100000; и проч.

§ 15.

После сих замечаний легко вывести правила, о числе цифр в квадратах и кубах. Изд (§ 10, V) видны,
что число цифр произведения равно числу оных в обоих производителях, или одним меньше; но квадрат есть такое произведение, которого оба производители равны, посему число цифр квадрата в два раза больше числа цифр основания или в два раза — без одной. Впрочем это заключение можно вывести из разсмотрения пределов чисел 1, 10, 100, 1000 и т. д. и из сравнения их с самыми числами; а именно: всх числа выраженные одной цифрой содержатся между 1 и 10
выраженных двумя — между 10 и 100
выраженных тремя — между 100 и 1000
и прочее.

Вообще в данном числе содержится столько цифр, сколько оных в меньшем его пределу, или одним меньше против большего, словом: равно числу нулей последнего; по сему и квадрат числа, состоящего 1-e, из одной цифры, будет содержаться между 1 и 10
2. Из двух цифр — между 10 и 100
3. Из трех цифр — между 100 и 1000
и прочее.

Вообще и в квадрате числа выраженного разными порядками единиц содержится, по предыдущему, столько
цифры, сколько в квадрате меньшего его предела, или одним меньше против большего; словом, равно числу
нудей последнего; но, сосчитав всл знаки квадратов первых пределов и нуди—вторых, находим, что
квадрат числа состоящего из одной цифры т. е.

(1 циф.). содержится или между
из 2 циф. 4
из 3 циф. 6
из 4 циф. 8
и прочее.

Но каждый из производителей, заключенных в скобки: (1), (2), (3), (4)......означает число цифры своего основания, другой же производитель 2, во всех произведеннях постоянен; при том 1 против 2 или против (1).2; 3 против 4 или (2).2; 5 против 6 или (3).2; 7 против 8 или (4).2 и т. д. одним меньше; поему вообще число цифр квадрата вдвое больше числа цифр основания, или вдвое—без одной.

Другими словами: на каждую цифру основания в квадрате приходится по два знака, кроме последней с левой руки, на которую может быть два или один знак. Вообще число граней квадрата, отличаемых с правой руки слева по два знака, также определяет число цифр основания. Если в квадрате 13 цифр т. е. 2.7 без одной,—то в основании должно быть 7 и проч.

§ 16.

Далее для кубов: числа выражаемы одною цифрою
содержатся между 1 и 10; слѣд. кубы ихъ должны содержаться между 1 или 1 и 10 или 1000, а потому они могутъ быть выражены 1, 2 и 3 цифрами т. е. кубъ числа выраженного одной цифрой или (1 цифр.) въ содержать 1, и 3, слѣд. можетъ содержать и 2 цифры.

Продолжая эти разсуждения усмотримъ, что чиселъ заключающихся между 10 и 100 и кубы ихъ содержаться между 10 или 100 и 100 или 1,000,000 и могутъ быть представлены 4, 5 и 6 цифрами т. е. сколько всѣхъ знаковъ въ 10 или однихъ нулей въ 100; слѣд.

(2 цифр.) содержать 4, 5 и 6 = (2). 3 цифры; такимъ же образомъ найдемъ, что

(3 цифры.) содержать 7, 8 и 9 = (3). 3 цифры
(4 цифры.) — 10, 11 и 12 = (4). 3
(5 цифры.) — 13, 14 и 15 = (5). 3
(6 цифры.) — 16, 17 и 18 = (6). 3

и проч.

Откуда также общее правило: число цифры куба противъ числа цифры основанія втроє больше, или втроє безъ одной, или втроє — безъ двухъ цифръ.

Другими словами: на каждую цифру основанія въ кубѣ приходится по три знака, кромѣ послѣдней съ левой руки, на которую можетъ быть три, два или одинъ знакъ; посему вообще, число граней куба отмѣчаемыхъ съ правой руки въвъ попри цифры, также опредѣляетъ число цифръ основанія. Такъ кубъ 123,456,789,101,213 основаніе должно состоять изъ пяти знаковъ разныхъ порядковъ единицъ.
§ 17.

Если требуется сложить напр. 40. 6 + 40. 6 + 40. 6 то на основании § 11, писемь 3. 40. 6; также

\[
2.30.5 + 30.5 = 3.30.5 \text{ ибо}
\]

\[
2.30.5 = 30.5 + 30.5 \text{ сл.д.}
\]

\[
2.30.5 + 30.5 = 30.5 + 30.5 + 30.5 = 3.30.5.
\]

Перейдем теперь к изысканию правила составления квадратов и кубов всех чисел. Во первых квадратов: для чего, взяв число 46, состоящее из десятков и единиц умножим его само на себя т. е. 46 × 46; или (40 + 6) × (40 + 6), по (§§ 12, 13,) будет

\[
46^2 = 40^2 + 40.6 + 40.6 + 6^2
\]

\[
46^2 = 40^2 + 2.40.6 + 6^2.
\]

т. е. квадрат числа выраженного двумя цифрами состоит из квадрата десятков, + удвоенного произведения десятков на единицы, + квадрат единиц. Сокращенно:

\[
(\text{десят.} + \text{единиц.})^2 = \text{десят.}^2 + 2 \times \text{десят.} \times \text{единиц.} + (\text{единиц.})^2
\]

Если будет число напр. 326, т. е., состоящее из сотен, десятков и единиц, то опять

\[
326^2 = (320 + 6)^2 = 320^2 + 2.320 + 6^2.
\]

но 320^2 = (300 + 20)^2 = 300^2 + 2.300.20 + 20^2; сл.д., подставив вместо 320^2 вторую часть, получим

\[
326^2 = 300^2 + 2.300.20 + 20^2 + 2. (320). 6 + 6^2.
\]

т. е. квадрат числа выраженного тремя цифра-
рами, состоит из квадрата сотен, умноженного на десятки, квадрата десятков, умноженного на сотни и десятков на единицы.

Или

\[(\text{сом.} + \text{дес.} + \text{еди.})^2 = \text{сом.}^2 + 2\times\text{сом.}\times\text{дес.} + \text{дес.}^2 + 2\times\text{сом.} + \text{дес.} + \text{еди.}^2\]

П. Протянув таким же образом с 4376, т. е. с числом состоящим из тысячи, сотен, десятков и единиц усмотрим, что оно, или вообще

\[(\text{тыс.} + \text{сом.} + \text{дес.} + \text{еди.})^2 = \text{тыс.}^2 + 2\times\text{тыс.}\times\text{сом.} + \text{сом.}^2 + 2\times(\text{тыс.} + \text{сом.}) + \text{дес.}^2 + 2\times(\text{тыс.} + \text{сом.}) + \text{еди.}^2\]

Вообще квадрат всякого числа содержит квадраты всех цифр, с соблюдением их порядков и умножением каждого высшего цифры на все низшие, а так же с соблюдением их порядков. Ибо квадрат данного числа есть произведение сего числа самого на себя, а произведение находится чрез умножение единиц, десятков, сотен, тысяч и проч. множимого на единицы, десятки, сотни, тысячи и проч. множителя. На основании найденных правил вычисляем

\[8004^2 = 64000000 = 8000^2\]

\[+ 664000 = 2.800.4\]

\[+ 16 = 4^2\]

\[= 64,664,016\]
\[(111111)^2 = 111111 \cdot 111111 = 1000000000 = (100000)^2\]
\[2000000000 = 2.100000 \cdot 10000\]
\[2000000000 = 2.100000 \cdot 1000\]
\[20000000 = 2.100000 \cdot 100\]
\[2000000 = 2.100000 \cdot 10\]
\[200000 = 2.100000 \cdot 1\]
\[2000000 = (100000)^2\]
\[200000 = 2.100000 \cdot 1000\]
\[200000 = 2.100000 \cdot 100\]
\[20000 = 2.100000 \cdot 10\]
\[2000 = 2.100000 \cdot 1\]
\[1000 = (100)^2\]
\[200 = 2.100.10\]
\[200 = 2.100.1\]
\[100 = (10)^2\]
\[20 = 2.10.1\]
\[1 = (1)^2\]

\[12345654321\]

§ 18.

Когда известен квадрат числа напр. 18, то следующего можно найти таком образом: 19^2 = 18 + 1 и 19^2 = (18 + 1)^2 = 18^2 + 2 \cdot 18 + 1. И так 19^2 = 361., т. е. если к квадрату данного числа придется его уд-
военное произведение с единицей, то получим квадрат следующего числа.

§ 19.

Кубы сложных чисел составляются таким образом: взяв например число 75, которого квадрат

\[70^2 + 2 \cdot 70 \cdot 5 + 5^2 \]

помножая еще на 75 или на 70+5, выдеть

\[75^3 = (70^2 + 2 \cdot 70 \cdot 5 + 5^2) \cdot (70 + 5) = 70^3 + 2 \cdot 70 \cdot 5^2 + 70 \cdot 5 + 2 \cdot 70 \cdot 5^2 + 5^3 = 70^3 + 3 \cdot 70 \cdot 5 + 3 \cdot 70 \cdot 5^2 + 5^3. \]

Посему куб числа содержащего десятки и единицы состоит из куба десятков, утроенного квадрата десятков, на единицы, утроенного произведения десятков на квадрат единицы, куба единиц; т. е.

\[(дес. + еди.)^3 = дес.^3 + 3 \cdot дес. \cdot еди. + 3 \cdot дес. \cdot еди.^2 + еди.^3. \]

Но, если основание будет многосложное, наприм. 845, тогда принимаем оное, как бы число за состоящее из десятков и единиц, потом находим

\[(845)^3 = (840 + 5)^3 = (840)^3 + 3 \cdot (840)^2 \cdot 5 + 3 \cdot 840 \cdot 5^2 + 5^3. \]

Последнего 840 разложив на 8 десяток и на 40 единиц, получим

\[(840)^3 = (800)^3 + 3 \cdot (800)^2 \cdot 40 + 3 \cdot (800) \cdot 40^2 + 40^3. \]

Вставив это выражение в первое найдем, что

\[(845)^3 = 800^3 + 3 \cdot 800^2 \cdot 40 + 3 \cdot 800 \cdot 40^2 + 40^3 + 3 \cdot (800 + 40)^2 + 5 \cdot 5 + 3 \cdot (800 + 40) \cdot 5^2 + 5. \]
то есть
\[(\text{сом.} + \text{дес.} + \text{еди.})^3 = \text{сом.}^3 + 3(\text{сом.})^2 \cdot \text{дес.} + 3(\text{сом.}) \cdot \text{еди.} + 3(\text{дес.})^2 \cdot \text{еди.} + 3(\text{дес.}) \cdot \text{еди.}^2 + \text{еди.}^3\]

Также получим
\[(\text{м.} + \text{с.} + \text{д.} + \text{е.})^3 = \text{м.}^3 + 3(\text{м.} \cdot \text{с.} + \text{м.} \cdot \text{д.} + \text{м.} \cdot \text{е.} + \text{с.} \cdot \text{д.} + \text{с.} \cdot \text{е.} + \text{д.} \cdot \text{е.}) + 3(\text{м.} \cdot \text{с.} \cdot \text{д.}) + 3(\text{м.} \cdot \text{с.} \cdot \text{е.}) + 3(\text{м.} \cdot \text{д.} \cdot \text{е.}) + 3(\text{с.} \cdot \text{д.} \cdot \text{е.}) + 3(\text{д.} \cdot \text{е.}^2) + \text{е.}^3\]

и т. д.

Поступая одинаким образом при составлении чисел из многолождящихся чисел, могли бы получить общее заключение о вычислении в куб всякаго даннаго числа, но такое заключение оказывается бесполезным при разрешении обратнаго вопроса, т. е., для извлечения кубических корней, которое несравненно удобнее производится по вышеназванному правилу, составления чисел из двух цифр, поелику о кубъ всякаго числа можно разсуждать, как о кубъ числа из двух цифр, из коголь первая съ львой руки вообще принимается за число высших порядков, а весь прочи на право — за число низших; и именно:

\[(\text{бол. чис.} + \text{мн. чис.})^3 = (\text{бол. чис.})^3 + 3(\text{бол. чис.})^2 \cdot \text{мн.} + 3(\text{бол. чис.}) \cdot (\text{мн.})^2 + (\text{мн.})^3\]

В числах:
\[(8352)^3 = (8000 + 352)^3 = 8000^3 + 3 \cdot 8000 \cdot 352 + 3 \cdot 352^2 + 3 \cdot 352 \cdot 352 + 352^3\]

Теперь понятно, что составление всѣхъ цифръ чисел производится чрезъ сложение, умножение, и возыва- не въ степени; кроме этих способовъ другихъ нѣть. При томъ, въ Ариеметикѣ разсматривается только воз-
вышение второй и третьей степени, все же протягим при
належать к исследованию Альгебры.

ГЛАВА ТРЕТЬЯ.

Троякое разложение данных чисел,
или о трех закрытых равенствах,
кои определяют искомыя, именуемые уравнениями.

ОТДЕЛЕНИЕ I.

ОБЩЕЕ РАЗЛОЖЕНИЕ ИЛИ ВЫЧИТАНИЕ.

а.) Общая исследований.

§ 20.

Вышеперечисленными три способами действий обратны
три другие, кои вообще составляют предмет изысканий,
одного из трех двух чисел, из коих третее данное составлено; или иначе: составляют предмет разложения данных числа на два других, из коих одно также дано, а другое пять. Когда известны два числа 5 и 4, то в сложении требуется найти их сумму 9, т. е. 5 + 4 = 9; но, ежели дается сумма 9 и на урим,
слагаемое 4, то можно потребовать, найти другое слагаемое (5) т. е. такое число х (§ 1, чл. VI), которое съ 4 составляет 9. Отсюда видимъ, что сумму 9, должно разложить на два слагаемыхъ, изъ коихъ одно уже данно и есть 4, а другаго величина неизвестна, но зависить отъ величины чиселъ 9 и 4, съ коими оно связано. Сей способъ разложения называется вычитаниемъ и на основаніи опредѣленія его, подставивъ х (§ 1 чл. VI выноска къ заключенію с) на мѣсто 5, въ выраженіе 5 + 4 = 9, имѣющемъ право, по § 6, написать

\[x + 4 = 9 \ldots \ldots (a) \]

Это числовое выраженіе вычитания, называется закрытымъ равенствомъ или уравненіемъ перваго вида, въ которомъ х + 4 есть первая, а 9 вторая часть. Посему уравненіе, какъ и тожество, состоитъ изъ двухъ совершенно равныхъ частей (§ 1, чл. VI). Съ другой стороны, въ уравненій (а), данная сумма 9, привзываетъ названіе уменьшаеаго, данное слагаемое (4)—вычитаемаго, а искомое слагаемое х—разности или остатка; въ слѣдствіе чего

\[x + 4 = 9 \]

daе́ть такое заключеніе: разность или остатокъ (х) вмѣсть съ вычитаемымъ (4) равняется уменьшаеагому (9); или обратно: уменьшаеаго равно разности (х) вмѣсть съ вычитаемымъ; и вообще пишуть

\[y = x + a \ldots \ldots (a) \]

Вотъ это основанное уравненіе вычитанія; смотрите на видъ его, и изучайте; въ немъ начальная буква (у) выражаетъ какое бы то ни было число уменьшаеаго,
(α) — вычитаемого, а (x) — разности или остатка, зависящего отъ (y) и (α); при томъ подъ y и α всегда разумьемъ данного числа, а подъ x — искомое.

Разрѣшить уравненіе

\[y = x + \alpha, \]

значитъ объяснить способъ вычислений х, поданнымъ числамъ y и α, и вмѣстѣ показать общую форму или формулу, которою сокращенно выражается вычисленный результатъ x.

Рѣшеніе. Для вычисления х, должно взять уравненіе въ числахъ, на прим., прежде

\[x + 4 = 9. \]

Откуда намъ понятно, что изъ x — а, сумма 9 состоится неизвѣстнѣ, какъ только тогда, когда къ x приложенъ или присчитаемъ 4 единицы; равнымъ, изъ 4 составится 9 тогда, когда къ 4 присчитаемъ x единицѣ. На семь основаніи, чтобы х вычислить, изъ уравненія х + 4 = 9, то должно къ числу 4, данному слагаемому, или иначе, вычитаемому, присчитать столько единицѣ, чтобы составилась данная сумма 9, тогда взятая единицы и покажутъ величину х; и такъ, присчитавъ къ 4, одну единицу, получаю 5; присчитавъ 2, нахожу 6; присчитавъ 3, имѣю 7; присчитавъ 4, выходимъ 8; а присчитавъ пять составляетъ данная сумма 9; слѣд. число 5 равно х, и x равно 5, т. е. \(5 = x \), и х = 5.

Съ другой стороны, разсматривая уравненіе

\[x + 4 = 9, \]

видимъ, что х противъ 9 меньше 4 единицами, или 9 противъ х больше 4 единицами; это очевидно, какъ
само по себе (§ 1 чл. IV), такъ и потому, что 9 есть сумма, а х слагаемое (§ 6 чл. 5); слѣд., чтобы х вывести изъ уравненія

\[4 + x = 9, \]
то 9, должно уменьшить 4 единицами; и такъ х равенъ 9 да только безъ 4. На письмѣ сказанное:

\[x = 9 \text{ безъ } 4 \ldots \ldots \] (b)

Вотъ это видъ результата вычитанія. Изъ него ясно указывается, что, для опредѣленія его, число 4, въ уравненіи

\[x + 4 = 9 \]
отдѣлилось отъ х, и перешло во вторую часть и именно къ 9, гдѣ 4 уже неслагивается, но отымаются изъ 9; посему, внесъ въ уравненіе (b), на мѣсто слова безъ, знакъ (—) минусъ (значитъ менѣе и прямо противно знаку +), получимъ результатъ х, въ слѣдующей общей формѣ

\[x = 9 - 4 \ldots \ldots \] (b)
т. е. 9 — 4 есть видъ результата. Вообще же цѣлое выраженіе выговаривается такъ: х равенъ 9 безъ 4; или х равенъ 9 минусъ 4. При томъ понима, что х называется разностью или остаткомъ, 9 — уменьшаемымъ, а 4 — вычитаемымъ, выводимъ, изъ формулы результатата вычитанія (b), слѣдующее заключеніе: разность или остатокъ (x), равенъ уменьшаемому (9) безъ вычитаемаго (4); а на основаніи общаго изображенія, основнаго уравненія вычитанія, пишутъ

\[x = y - a \ldots \ldots \] (b)
Теперь, чтобы посему общему виду результата, вычислить частный, т. е. чтобы, на самомъ дѣлѣ, о предѣлить величину х, изъ уравненія

\[x = 9 - 4, \]
то должно, в противоположность § 6 и § 7, из 9 единиц, в строке написанных

\[(1 + 1 + 1 + 1) + 1 + 1 + 1 + 1\]

отнять, вычесть 4 единицы, на примете, отдельных их скобками, или совсем уничтожа, то остальная 1 + 1 + 1 + 1 + 1 пять и означать искомое слагаемое или разность, х, т. е. \[x = 1 + 1 + 1 + 1 + 1 = 5\]. И так, вставив в результат вычитания, на место х, ему равное число 5, получим

\[5 = 9 - 4\];

t. e. вычисленная разность 5, равна уменьшаемому 9, безъ вычитаемого 4; или уменьшаемое 9 минусъ вычитаемое 4 равно разности 5.

Повторка показанного вычисления разности, по результату вычитания, производится чрез обратную подстановку 5 на место х в условное уравнение \[x + 4 = 9\], которое, по § 6, обращается в тожество или выкладку суммы \[5 + 4 = 9\]. Изъ сего легко усмотреть, что \[5 + 4 = 9\], и \[x + 4 = 9\] неодно и тоже, хотя оба связаны одним и тем же дѣйствием и равенством.

Общее замѣчаніе. Что сказано и здѣсь надъ уравненіями \[x + 4 = 9\] и \[x = 9 - 4\], выраженными чрезъ числа 4 и 9, то самое можно приложить, отъ слова до слова, и ко всѣмъ прочимъ; вся разность, только въ частиной величинѣ тѣхъ и другихъ, сущность же дѣла для всѣхъ общая; такъ что, все предпочитующее \[x + 4 = 9\] и \[x = 9 - 4\], равномѣрно приличествуетъ и уравненіямъ \[x + e = y\], и \[x = y - e\], вообще разматриваемымъ, какъ представителямъ способа дѣйствій, надъ всѣми возможными числами.
§ 21.

Общее следствие. 1. Из хода решения основного уравнения \(a \) и результата \(b \), следует, что выражение последнего:

\[x = y - c, \]

показывает не только общий ход способа вычисления \(x \), т. е. то, что именно должно делать с \(9 \), чтобы из него получить частную разность, но вместе и вид \(x \), как он должен представляться в общем результате, по самом вычислении; след., одна и также формула удовлетворяет, в одно время, двум требованиям: и способу действия, и виду результата действия. И так воспользуемся этим замечанием и повторим, что в последнем случае, — в результате, сия формула представляет общий вид избыточка \((y) \) над \((a) \), т. е. чем именно \((y) \) больше \((a) \), и обратно, чем \((a) \) меньше \((y) \).

2. На основании двойственного значения результата вычитания \(b \), следует, что вычитание есть вмести и способ и действие; способ, поелику оно приличным изображением общего результата, в форм уравнения, показывает общий вид действия для вычисления разности \(x \); действие, поелику из той же формулы вычисляется, на самом деле, и частный результат разности \(x \). Вообще, способ относится к универсальным изследованиям, а действие — к частным. И так,

1. Вычитание есть способ и действие, коими совокупно определяется разность или избыток уменьшающего над вычитаемым, чрез исключение второго из первого.
2. Уменьшаемое есть число, изъ котораго исключается вычитаемое.

3. Вычитаемое есть число, которое исключается изъ уменьшаемаго.

Откуда наконецъ 4, числа уменьшаемаго и вычитаемаго вообще суть выражения двухъ количествъ (§ 1, 2 и 6) а разность—часть уменьшаемаго, т. е. количество же, остающееся отъ исключения, какъ избытокъ, перваго надъ вторымъ.

Въ заключеніе не худо также сказать, основываясь на опредѣленіи вычитанія, что ариѳметическое дѣйствіе только одно: сложеніе; умноженіе же возвышеніе въ степень, вычитаніе, дѣленіе и извлеченіе корней выходитъ изъ этого механическаго значения; поелику суть вмѣстѣ и способъ и дѣйствіе.

§ 22.

Частныя заключенія:

1. Итакъ уравненіе вычитанія, которое составляетъ существенное цѣлое—вычитаніе, одного вида

\[x = y - a \]

и основаніемъ ему служить другое,

\[y = x + a \]

конъ въ частномъ случаѣ, какъ въ нашемъ рѣшеніи, имѣютъ видъ:

\[x = 9 - 4 \]

\[9 = x + 4 \]

и, изъ коихъ послѣднее не все тоже, что \(5 + 4 = 9 \). Ибо, это есть тожество и принадлежитъ къ дѣйствію сложеній.
пій, т. е. къ выкладки суммы 9 по даннымъ 5 и 4, меж-ду тѣмъ первое, къ способу изысканія слагаемаго х.

2. Уравненіе общаго результата вычитанія (b) вы-ведено изъ основанаго уравненія (a), съ помощью произ-вольнаго условія принять именно такое, а не другое изображеніе, въ противоположность уравненію (a). Но какъ бы ни было, а существенная противоположность въ

\[x + c = y \]

и

\[x = y - c \]

какъ выше видѣли, действительно находится; въ пер-вомъ х слагается съ c, и обратно c слагается съ х, для того, чтобы произвести сумму y, словомъ х съ c находятся въ связи и въ одной части уравненія; во второмъ же, съ отъ х отторгнуто или раздѣлено проти-воположною частію уравненія, гдѣ х неслягается, но уже вычитается изъ y, для того, чтобы уменьшить y и тѣмъ дойти до искомой разности х. Въ слѣдствіе так-кой противоположности уравненій и знаки ихъ (+) и (−) между собою условно противоположны. Первый именуется положительнымъ, а второй — отрица-тельнымъ.

§ 23.

Пользуясь симъ изученнымъ различіемъ, по коему уравненіе результата вычитанія (b) противоположно основному уравненію вычитанія (a), легко первое обра-
щать во второе. Для ясности дела снесем их опять вместе:

\[x + e = y \quad (a) \]
\[x = y - e \quad (b) \]

из разсмотрения коихя ясствует, что при определении из уравнения \((a)\) общего результата \((b)\) число \(+e\) перенесено из первой во вторую часть опаго съ

проверными или отрицательным знаком \((-)\); посему и обратно, если требуется из результата \((b)\) составить основное уравнение \((a)\), то должно \((-e)\) из второй части перенести опять в первую съ положительным знаком \(t. e. \text{ сь (+)-мь}, \text{ какъ это яснѣе видѣть можно изъ самаго уравненія (a)}; \text{ и такъ вообще, чтобь число изъ одной части уравненій перенести въ другую, то всегда должно въ переносимомъ перенести его знакъ; т. е. + на —, a — на +.}

§ 24.

Сей часъ видѣли, что изъ основнаго уравненія:

\[x + e = y \quad (a) \]

разность \(x\) опредѣляется уравненіемь

\[x = y - e; \]

Но, если разность дана, а будешь отыскиваться вычисляемое \(e\), то, положивъ \(x\) за \(e\), а \(e\), измѣнивъ въ разность \(p\), основное уравненіе \((a)\) принимаетъ видь

\[p + x = y \]

Откуда \(x\) по общимъ правиламъ вычитанія будеть

\[x = y - p \quad (c) \]
Следуя вычитаемое x равно уменьшаемому y без разности r. Вообще уравнения (b) и (c) суть нечто другое: как переобразование основного (a) из предыдущего которого, они никак не могут.

§ 25.

И так выведенная три уравнения:

$$y = a + p \quad \text{(a)}$$
$$p = y - b \quad \text{(b)}$$
$$e = y - p \quad \text{(c)}$$

составляют общее основание для всей математики, где только входит способ вычитания количеств. Так.

1. Если потребуется разрешить числовое уравнение $x + 8 = 17$,

то x, как искомое слагаемое, по уравнению (b) определяется разностью:

$$x = 17 - 8 = 9$$

2. Если дано будет $x - 6 = 10$,

то отсюда x, как уменьшаемое, по уравнению (a) получу:

$$x = 10 + 6 = 16$$

3. Когда же предложено разрешить $20 - x = 3$,

то x, как вычитаемое, по уравнению (c) найду:

$$x = 20 - 3 = 17$$
4. Таким образом, если отдельно даны избыток (7) двух неровых чисел (x) и (30), то по
оному можно составить и самое равенство последних; так, если будет известно, что x > (больше) разности
7 числом 30, то чтобы x приравнять или уравнить 7,
должно из х вычесть 30 или к 7 придать 30; т. е
x — 30 = 7, или x = 30 + 7. Если же 30 > 7 числом x,
то, дабы 30 приравнять 7, должно или из 30 вычесть
x, или к 7 придать x; так что 30 — x = 7 или
30 — 7 + x, откуда x = 30 — 7 = 23. Как писано
теперь ходъ сихъ преобразованій, но при изложеніяхъ обыкновенно
венныхъ Ариеметикъ оны всѣдо оставались неудобно—
понятными.

Общее замѣчание. И такъ, если когда либо бу-
демъ имѣть числовое уравненіе вида
x + 5 = 20 или
5 + x = 20,
гдѣ на мѣсто 5 и 20 могутъ быть всякія числа, такъ
на прим. взьмите какія угодно, то оное всѣдо должно
принять за основное уравненіе вычитанія, въ кото-
ромъ 20 есть уменьшаемое, а 5 вычитаемое или раз-
ность, смотря по требованію.

§ 26.

1. Вставивъ въ основное уравненіе (a):

y = x + 6

вместо x самый результатъ его: y — 6, получимъ

y = (y — 6) + 6 = = = = = = = = = = = (d)
И так, уменьшающее (y) равно общему результату вычислений $(y - e)$ вместо вычитаемых (e).

2. Но дабы в семь тожественном выражении (d) y в действительности было равно $(y + e + e)$, то необходимо, чтобы e с e производили нуль; ибо в семь только случаев y первой части уравнения (d) может быть тожественно y второй части, содержащемуся в изображении общего результата $(§ 20)$, и именно когда будет

$$y = y + 0 = y \ldots \ldots \ldots \ldots \ldots (1)$$

где нуль производит e с e. Но сложение e с e нуля произвести не может; ибо $e + e = 2 e$ $(\times 9)$; слак между e и e существует вычитает, как показывает и самое выражение взятое из уравнения (d):

$$- e + e = 0,$$

или $+ e - e = 0$ или $e - e = 0$

в последнем вывод пред e подразумевается $(+)$, так что, вставив $e - e$ в уравнение (1) вместо нуля получаем

$$y = y + (e - e) = y$$

И такое выражение

$$+ e - e = 0 \ldots \ldots \ldots \ldots \ldots (e)$$

показывает, что два равных числа с противными знаками друг друга уничтожают; или, остаток между равными числами есть нуль; другими словами: между равными числами остатка ньть.

И действительно, взяв частый случай, например: тожество

$$16 = 16 + 0, (§ 6, замеч.)$$
сказанное становится очевидным; ибо, положив нуль за искомое слагаемое, имею

\[0 = 16 - 16 \]

t. e. если из числа единицу уменьшаемого в строке написанных (§ 20) отнимается тоже число вычитаемого, то в разности неокажется ничего. Значит выведенное выше заключение верно. На основании того и \(20 - 20 = 0; \]
\(35 - 35 = 0; 1705 - 1705 = 0 \) и т. д.

§ 27.

И так 1, тожество (d)

\[y = y + \varepsilon - \varepsilon \]

Научаем, что a) всякое число (смотря на первую часть) величиной своей неперемножается, т. е. не увеличивается и неуменьшается, если к нему (смотря на вторую часть) придается и в то же время опять отнимается одно и тоже число.

Б). Чтобь вычесть из суммы двух \(y + \varepsilon \) (или больше) чисел третье, то достаточно сие вычесть из одного из данных слагаемых и остаток придать к остальным слагаемым.

II. Равенство уравнения не нарушается, если к обоим частям его придадим или отнимем по равному числу; равны количества, после равных изменений остаются всегда равными между собой; посему, придавши и вычитши из обьих частей основного уравнения

\[y = x + \varepsilon \]
наприм. число 5, в первом случае получим
\[y + 5 = x + (c + 5) \]
во втором также
\[y - 5 = x + (c - 5) \]
откуда, определяя разность \(x \) имеем
\[x = y + 5 - (c + 5) \quad \text{жм. (f)} \]
\[x = y - 5 - (c - 5) \quad \text{жм. (g)} \]
И так разность величины своей неперемножает т. е. не увеличивается и не уменьшается, если уменьшаемому и вычитаемому, в одно и тоже время, при-дается или отнимается по одному и тому же числу.

\[\text{§ 28.} \]

На основании урав. (e) может взять
\[y - y = 0 \]
где, принимая \(y \), стоящее на месте вычитаемого, за ис-комое, по (§ 25,) урав. (e) будет
\[y - 0 = y \quad \text{жм. (h)} \]
т. е. разность между числом и нулем есть данное число; ибо число неуменьшается от вычитания из него нуля. И так 16 - 0 = 16, 100 - 0 = 100 и прочее.

Перенеся же из уравнения (e)
\[c - c = 0 \]
\(c \), стоящее на месте уменьшаемого, во вторую часть онаго съ противнымъ знакомъ (§ 23) т. е. съ (-) по-лучимь
\[-c = 0 - c \quad \text{или} \]
\[0 - c = -c \quad \text{жм. (k)} \]
т. е. разность между нулем и числом есть данное число с знаком (−); потому, что разность или все тоже, что избытков, в семъ случаев, остается отъ вычитаемого, имеющего или присоединенного знакъ (−). Въ числахъ: 0−16=−16, 0−70=−70, а 5−11=−6; потому что 11−5+6; слѣд. 5−11=5−5=6−0=6=6; ибо 5−5=0. и проч. Такія разности называются отрицательными; такъ:−2,−9,−35,......суть числа отрицательныя, а 2, 9, 35......предъ коими подразумѣвается знакъ (+), и которыхъ выходятъ также изъ вычитания—положительными. Слѣд. числа положительныя и отрицательныя суть не другое что, какъ избытки; первыя уменьшаются надъ вычитаемымъ, а вторыя на оборотъ, вычитаемого надъ уменьшаемымъ; уменьшающее же и вычитаемое, сами по себѣ, неимѣютъ ни избытка ни недостатка, потому прилично назвать ихъ средними или неутральными — между тѣми и другими; т. е. такими, которыя могутъ изъ себя давать избытки и положительныя и отрицательныя и могутъ со всѣмъ недавать ныхъ, если неходить въ снесении или дѣйствіе.

§ 29.

На основаніи сказаннаго, если наприм. изъ числа 6 вычитаются числа 1, 2, 3, 4, 5, по натуральному ихъ порядку, то получимъ рядъ

6+5,+4,+3,+2,+1+0 (ибо 6−6=0)

количество положительныхъ, кромѣ 0, которое относится къ уничтожающемуся.
Продолжая дальше изъ 6 вычитать, постоянно, числа 6, 7, 8, 9, 10, 11, 12, выйдет другой ряд:

\[+0, -1, -2, -3, -4, -5, -6 \]

количество отрицательных, который впрочемъ можно найти, если будемъ изъ 0 прямо вычитать 0 а потомъ первые числа: 1, 2, 3, 4, 5, 6,

Соединивъ же оба ряда, получимъ одинъ:

\[6 + 5, + 4, + 3, + 2 + 1, + 0 - 1, - 2, - 3, - 4, - 5, - 6. \]

или

\[6 + 5, + 4, + 3, + 2, + 1 \pm 0, - 1, - 2, - 3, - 4, - 5, - 6. \]

количество положительныхъ, отрицательныхъ и уничтожающихся; ибо, если изъ противоположныхъ отдѣленій возмутся какія нибудь два члена, отстоящія отъ нуля на равномъ разстояніи, съ тѣми знаками, какія при нихъ находятся, то по (§ 26, 2,) при снесеніи, они другъ друга уничтожать. Извъ сего ясствуетъ, что количество уничтожающееся или нуль есть предѣлы положительныхъ и отрицательныхъ количествъ, идущихъ по двоякому значенію, (при пакертаніи) въ двѣ противоположныя стороны: если положительная въ правую, то отрицательная въ львую; если отрицательная въ правую, то положительная въ львую, нуль же всегда остается постоянною, занимая по мѣсту средину между тѣми и другими.

§ 30.

Показанное троное свойство количество нищемъ при-
лично или проще нельзя выразить, как накертатель-но линиею АВ.

А — — — — — — — — 0 — — — — — — Б
+6, +5, +4, +3, +2, +1 — 0 — 1, — 2, — 3, — 4, — 5, — 6.

коей средину 0, приняв за нуль, а части оной отсчитываемы от 0 влево сторону — за количества положительныя, противоположныя же им, — отсчитываемыя вправо — за отрицательныя; так что и вся часть ОА относительно части ОВ есть положительная, а эта къ первой — отрицательная и обратно.

Въ заключение общих изслѣдованій нашихъ повторимъ, что главныхъ уравнений вычитанія всего девять, выпишемъ ихъ для общаго свода:

1. \(y = a + p \)
2. \(p = y - a \)
3. \(a = y - p \)
4. \(y = y + b - b \)
5. \(b - a = 0 \)
6. \(x = y + 5 - (a + 5) \)
7. \(x = y - 5 - (a - 5) \)
8. \(y = o = 0 \)
9. \(o - e = - b \)

b.) Частныхъ изслѣдованія.

§ 31.

Вычисление разности. Чтобы определить разность сложныхъ чиселъ по данному уменьшающему, напр. 567
и вычитаемому 243, то должно, какъ уже видѣли (§ 20), числа единицы, десятка, сотни и т. д. уменьшаемаго уменьшить тѣмъ же числами даннаго вычитаемаго т. е.

\[
\begin{align*}
567 - 243 & = \\
60 - 40 & = \\
500 - 200 & = \\
\end{align*}
\]

7— 3
60— 40
500— 200

Но какъ уменьшаемое равно вычитаемому вмѣстѣ съ разностью (§ 20), то, для определенія послѣдней, слѣдуетъ къ числамъ единицы, десятка, сотни и т. д. даннаго вычитаемаго присчитать столько чиселъ единицы десятка, сотни и пр., чтобы въ суммахъ выходили числа единицы, десятка, сотни и т. д. даннаго уменьшаемаго: тогда сумма взятыхъ прибавочныхъ чиселъ и покажетъ искомую разность. И такъ къ 3 единицамъ должно прибавить 4 единицы, къ 40 прибавить 20, къ 200 прибавить 300, чтобы составить 7 един. 6 десят. и 5 сот. даннаго уменьшаемаго; слѣд.

\[
\begin{align*}
567 - 243 & = \\
60 - 40 & = \\
500 - 200 & = \\
\end{align*}
\]

7— 3 = 4
60— 40 = 20
500— 200 = 300

и

567—243—4+20+300=324

Въ практикѣ все это представляютъ такъ:

567
243
——
324

t. e. пишутъ меньшее число подъ большимъ такъ, чтобы цифры одного разряда стояли въ томъ же столбикѣ и проводя черту вычитаютъ
постепенно, переходя от правой руки к левой, единицы из единиц, десятки из десятков, сотни из сотен; полученные остатки, поставленные под чертою против своих однородных, покажут требуемый вывод разности.

§ 32.

Теперь встречается только одно затруднение: когда низкотрёх цифры уменьшаемого меньше соответствующих цифр вычитаемого. Это затруднение уничтожается помощью следующих приёмов.

1. Сумма больше каждого из своих слагаемых, (§ 6, 5).

2. Если складывается только два числа, то в суммах каждого порядка единиц не может выходить больше 18; ибо старшая цифра есть 9 а 9 + 9 = 18.

3. Если от сложения каждого порядка единиц в суммах выходят десятки, то относятся к следующему порядку (§ 7).

Теперь пусть требуется вычсть 790863 из 875315, то опять по предыдущему составив

\[
\begin{align*}
5 - 3 & \\
10 - 60 & \\
300 - 800 & \\
875315 - 790863 &= 80000 - 0 \\
50000 - 0 & \\
70000 - 90000 & \\
\end{align*}
\]

И так, чтобы получить 5 единиц уменьшаемого, должно к 3 прибавить 2. Переходя ко второму вычитанию внизу, что вычитаемое 6 десят. и уменьшаемое 1 десят., а как в нем не может выйти 1 по пер-
вому замечанию и более 11 десят. по второму; сл. по третьему—заключаю, что при составлении суммы 875315 десятковъ десятковъ отнесень были къ сотнямъ, который при настоящемъ вычислении долженъ опять возвратиться къ своему десяткѣ. Также изъ 8 сотень неможешь составится 3 сот., а 13; сл., онъ 10 сотень отнесены были къ тысячамъ. Наконецъ изъ 9 десятковъ тысячъ долженъ составить не 7 десят. тыс. но 18 слѣдов. уменьшаемое какъ сумма вычитаемаго и разности содержить 5—3—2 11 дес.—6 дес. = 50 875315—790863= 12 сот.—8 сот. = 400 4 тыс.—0 тыс. = 4000 17 дес. тыс.—9 десят. тыс. = 80000 7 сот. тыс.—7 сот. = 0. или 875315—790863=2+50+400+4000+80000—84452.
Все это представляютъ такъ:
875315 уменьш. 790863 вычит. 84452 остат.
Если бы каждая цифра низшаго разряда, была бы меньше соответствующей высшей цифры, то действие можно было бы производить съ правой и съ левой стороны. Какъ же часто случается, что одна изъ низших цифр, превосходитъ высшую, то вычитание чиселъ можно производить только занимая отъ слѣдующей цифры въ лѣво или дальше ей, но не наоборотъ; а потому всегда должно начинать дѣйствіе съ правой стороны, чтобы, въ случаѣ нуды, была возможность заимствовать высшую единицу, а въ всѣдствіе чего для вычитанія—
общее правило: чтобы вычесть из большего числа меньшее, должно поступить по § 31; если же какая—либо цифра вычитаемого больше соответствующей цифры уменьшаемого, то для возможности вычитания нужно уменьшить последнюю 10 единицами, полученными через уменьшение одной единицею следующей непосредственно за нею волю цифры ($4, 5), обыкновенно для краткости говорить: должно занять единицу от следующего высшего знака, данного уменьшаемого.

Замеч. 1. Можно неуменьшать единицей той цифры уменьшаемого, от которой требуется занять; в этом случае должно увеличить единицей соответствующую цифру вычитаемого. Сей способ действия удобнее в практике. Так в следующем примере:

36147
19328
16819

Во первых вычитают не из 7—8 по 17—8=9 потому из 4 не 2 а 3=1, поелику в этом вычитании остаток выходит один и тот же, какой и в обыкновенном, отъ 3—2=1; таким же образом не из 1—3 а изъ 11—3=8, далее не изъ 6—9 а изъ 16—10=6, наконецъ изъ 3—2=1.

Примеръ:

уменьш. 5487 9693
вычит. 1234 987

4253 8706

Примеч. 2. Когда надо вычесть цифры с чис-
ным, тогда цифра сия уменьшается единице, послѣдній же вправо муль превращается въ 10, а всѣ прочія въ 9, такъ какъ

\[0 - 01 - 01 - 01 - 01 - 90000 \]

\[382309 \]

\[\overline{7691} \]

побо 90000 превращается въ 8 деся. тыс. 9 тыс. 9 сот., 9 деся. и 10 единицъ также:

\[100000 - 6 = 99994 \]

Примеры:

\[\begin{array}{c|c|c}
10000 & 281000 & 11000 \\
37 & 280009 & 09009 \\
50 & 608 & 49963 \\
\end{array} \]

99101991

§ 33.
Для вычитания предложены всѣ правила; но если тре-
буется сложить въ вычетѣ многихъ числа, то, для удобоб-
ности, вычтание помощью арифметическаго дополн-
енія превращается въ сложеніе. Арифметическое же
дополненіе есть не другое, какъ разность между дан-
нымъ числомъ и единицѣ высшаго порядка, содержа-
щаго при себѣ столько нулей, сколько въ предложен-
номъ числы знаковъ, или нѣсколькими единицами выш-
шаго же порядка, которыхъ ли въ какомъ случаѣ недол-
жно быть болѣе 9, съ такимъ числомъ нулей, сколько
цифры въ данномъ вычитаемомъ безъ одной.

Например арифметическое дополненіе числа 692 най-
dается, когда 692 вычитается изъ 1000; и такъ, 308 есть
арифметическое дополненіе числа 692; по для 1325 оно
будетъ 2000 — 1325 = 675.

Пусть требуется вычесть 15 — 6; и такъ, поелику числа величины своей неперемѣшиваются, когда изъ него
вычитается какое-либо другое число, в в-тоже время вычисление уменьшающегося по на."
посему уменьшающее
15 - 15 - 10 + 10 сл. по 15 - 6 = 15 - 10 + 10 - 6; по
10 - 6 = ар. доп. 4 поsemu
15 - 6 = 15 - 10 + 4 = 15 + 4 = 19 - 10 = 9.
И так 1. Настоящая разность получается, когда вместо
вычитания 6 из 13, приложится ар. допол. 4 вычитаемого 6 к уменьшающему 10 и потом исключится 10. Есце
863 - 7 = 863 - 10 + 10 = 863 + 3 - 10 = 856
или
863 - 7 = 863 - 1000 + 1000 = 863 + ар. допол.
993 - 1000 = 856.
2. Последний пример сравненный со вторым показывает,
что, если число знаков уменьшающего будет
больше числа знаков вычитаемого, в таком случае,
для удобства вычисления, ариф. допол. лучше
предназначать, вычитая вычитаемое из единицы с таким
числом пудов, сколько уменьшающее содержит в со-
бь знаков.
Но если бы требовалось 3.) вычесть 3402 - 1002, в в
таком разе, ариф. допол. числа 1002 будет 2000-
1002 = 998 и
3402 - 1002 = 2402 + ариф. допол. 998 - 2000 = 4400-
2000 = 2400.
т. е. должно последнюю цифру 4, съ левой руку найденной суммы 4400, уменьшить уже 2 единицами, поsemu,
4. Для арифметического дополнения общее правило:
чтобы вычесть одно число из другого, то к уменьшающему должно придать арифметическое
6.
дополнение вычитаемого, определенное по правилам 2-му и 3-му; и из самой высшей цифры найденной суммы вычесть столько единиц, сколько она содержит в главной цифры того уменьшаемого, из которого определялось дополнение.

Сей способ решения изображается так:

1) 15 — 6 = 15 + 14 = 9
2) 863 — 7 = 863 + 13 + 856
3) 863 — 7 = 863 + 1993 + 856
4) 3402 — 1002 = 3402 + 2998 = 2400.

т. е. в первом примере, число 14, во втором 13, в третьем 1993, означают, что арифметич. допол, 4; 3; 993 по порядку должно прибавлять: 4 к 15; 3 к 863; 993 к 863 и потом из высшей цифры, каждой суммы, вычесть 1; в четвертом же, число 2998 показывает, что 998 должно придать к 3402 и из высшей цифры найденной суммы 2400 вычесть число 2; чрез что и получается требуемая разность: 9, 856, 856 и 2400.

Вообще числа 1, 1, 1, 2, постановленных пред арифметич. дополнениями выражают, сколько нужно вычесть единиц, из высшей цифры найденной, чрез действия арифметического дополнения, суммы, чтоб определить желаемую разность.

Подобно сему будет

9635 — 3763 = 9635 + 16237 = 5872
395094 — 123045 = 395094 + 1876955 = 272049.

§ 34.

После чего укажем, где полезно употребление ариф-
метических дополнений. Пусть требуется из суммы двух чисел 672736 и 426452 вычесть сумму двух других 432752 и 18675; то, вместо двух сложений и одного вычитания, нужно только первое число сложить с арифметич. дополн. последних. Так:

672736

426452

ариф. допол. числа 432752, 1567248
ариф. допол. числа 18675 1981325

2,647761

и наконец из найденной суммы, отняв первый знак от левой руки 2, остающееся число 647761 и будет требуемая разность данных чисел. По обыкновенному же способу составили бы сумму слагаемых и сумму вычитаемых чисел и вычли бы меньшую сумму из большей; след. сделали бы два сложения и одно вычитание; между тем, как сделать, делаем одно сложение, а вычисление дополнений такое легко, что нельзя принимать этого за особое действие.

Подобным образом, если требуется сложить и вычесть 509—708+399—1002+563+2999; то, на основании сказанного, вычтание превращается в сложение чисел:

2999
509
399

2292
1998
1437

5,634
откуда, отнявъ 4 съ левой руки, получаемъ настоящую разность 1,634.

Еще 159—784+703; слагаю:

\[
\begin{array}{c}
803 \\
159 \\
1216 \\
1,078,
\end{array}
\]

Гдѣ также, отнявъ предъ занятою 1, настоящая разность будетъ 78.

§ 35.

Общее замѣчание. Всѣ задачи на вычитание разрѣшаются скрывающимися въ нихъ смысломъ: тѣмъ меньшее, тѣмъ меньше. Вотъ примѣръ:

1. Нѣкто присоединилъ къ своимъ крестьянамъ, купленныхъ 5079 человѣкъ, послѣ чего всѣхъ нашлось 6408 душъ. Справъ сколько у него было своихъ крестьянъ?

Рѣшеніе. По смыслу вопроса пишу

\[
5079+x=6408
\]

откуда

\[
x=6408-5079=329 \text{ душъ своихъ.}
\]

2. Нѣкто изъ числа своихъ денегъ издержалъ 3825 руб. и послѣ этого осталось у него 1313 руб. Спр. сколько всѣхъ денегъ та особа имѣла.

Пишу

\[
x=3825=1613
\]

и

\[
x=3825+1613=5438 \text{ руб.}
\]

3. У командира полка взято изъ лучшихъ солдатъ некоторое число въ гвардію, и послѣ сего еще осталось