Къ вопросу о функции оконощитовидныхъ железъ.

Изъ лабораторией общей и экспериментальной патологии Императорского Харьковскаго Університета, проф. А. В. Репреева.

Д-ръ М. Павловъ.

Вѣнскій клиницистъ Erdheim—одинъ изъ современныхъ везлѣдователей роли оконощитовидныхъ железъ—о физиологическомъ значеніи этихъ маленькихъ органовъ остроумно замѣтилъ, что „между ихъ малой величиной и тяжелымъ часто смертельнымъ теченіемъ болѣзнi послѣ ихъ удаления, имѣется такой рѣзкий контраст, что послѣдствія паратиреоидектоміи походятъ на чудо, а потому и принимаются съ нѣкоторымъ скептицизмомъ“ 1).

Замѣчаніе это совершенно правильно.

Gl. parathyreoidae, какъ въ настоящее время выясняется, являются, дѣйствительно, жизненно необходимыми органами, и удаление ихъ изъ организма неизбѣжно обусловливаетъ наступление болѣзнянъъ, явленій хроническаго характера, нерѣдко сопровождающихся приступами переходящей, а въ тяжелыхъ случаяхъ смертельной тетаний.

Такую свѣзь между выпаденіемъ вліянія на организмъ оконощитовидныхъ железъ и указанными разстройствами въ жизни организма ученые подмѣтили какихъ-нибудь тридцать лѣтъ, и съ этого же времени начинается серьезное изученіе причинъ, ихъ производящихъ, въ связи съ всестороннимъ изученіемъ оконощитовидныхъ железъ. Естественно, что за такой короткій срокъ изучить эти железы не удалось. О нихъ трактуетъ длинный рядъ специалистовъ изслѣдователей; объ ихъ анатоміи, эмбріологіи и физіологіи и т. д. выказано много разнородныхъ, спорныхъ и неопровержимыхъ мнѣній, такъ что въ окончателной и полной формѣ вопросъ объ ихъ значеніи въ организмѣ еще ждеть своего разрѣшенія.

Честь постановки вопроса о паратиреоидныхъ железахъ на вполнѣ научный и правильный путь, честь первыхъ, во многомъ до

наших дней сохранивших свою силу, изысканий о них привадлежит шведскому ученому Sandström'y.

Они обнаружили наличность околоочитовидных желез у человека и разных животных, они впервые подверг их анатомическому и гистологическому обследованию, они, наконец, высказали вполне возвратную гипотезу об отношении их к щитовидной железе, от которой раньше исследователи совершенно их не отделяли. Самые важные результаты научных изысканий Sandström'a и последующих ученых, в виду новизны вопроса об околоочитовидных железах, мы кратко постараемся привести, насколько позволяет это наша основная задача.

Относительно постоянства их нахождения у человека и животных почти всех авторов, работавших над ними, высказываются в положительном смысле.

Gl. parathyreoidae встречаются во всех животных организмах и резко отличаются от добавочных щитовидных желез, которые, как известно, суть отдельными части от щитовидной железы, одинакового строения и функции с этой последней.

Смешивать gl. parathyreoidae с добавочными нельзя: уже по видимым признакам—околощитовидные железы обладают более желтоватым цветом, тогда как добавочные имют маслянокрасную окраску. Вследствие такого цвета gl. parathyreoidae иногда бывает очень затруднительно отыскать в окружающей их ткани жировой клетчатки.

Кроме того, они отличны от добавочных и по микроскопическому своему строению, и по положению.

Gl. parathyreoidae имют самостоятельную соединительнотканную капсулу, от внутренней, прилегающей к железе поверхности которой отходят перегородки, разделяющей эту последнюю на отдельные железистые долки. Дольки состоят из рядами расположенных эпителиальных клеток, имеющих круглое в центре лежащее ядро и желтоватую протоплазму. В перегородках проходят сосуды, питаящие паренхиму желез и, может быть, служащие отводными каналами для секрета, отделяемого этими клетками. Около hilus'a, чрез который проникают в ткань железы кровеносные сосуды, втрячаются иногда в громадном количестве тучными клетками, с мелкой и крупной, базофильной окрашивающейся зернистостью. Протоплазма клеток хорошо красится эозином и вообще кислыми красками. В клетках можно иногда наблюдать жировых, гликогенных и коллоидных сильно преломляющих свет включений.
Въ межжлёточныхъ пространствахъ нерѣдко встрѣчаются цѣлыя скопленія коллоиднаго вещества, ограниченного отъ паренхимы железъ или плоскимъ одноклѣточнымъ эпителиемъ, или свободно лежащаго въ межклѣточныхъ промежуткахъ и своею массою раздѣляющаго эти послѣднія.

Питающими артеріями околощитовидныхъ железъ являются art. parathyreoidae, отходящія отъ art. thyreoidae infer. и вступающія безъ анастомозовъ прямо въ существо железъ.

Относительно венозной и нервной системы этихъ железъ, до настоящаго времени положительно установленныхъ данныхъ не имѣется.

Обычное мѣсто положеніе околощитовидныхъ железъ—это задняя поверхность и нижній край боковой доли щитовидной железы. Всѣхъ gl. parathyreoid. у каждаго животнаго 4. Въ зависимости отъ своего положенія, относительно щитовидной железы, они дѣлятся на верхнія и нижнія. Первыя лежатъ приблизительно на границѣ средней ея части и отличаются постоянствомъ своего положенія, и у большинства животныхъ бываютъ довольно плотно спаяны съ капулей щитовидной железы. Называются они еще (по почину Kohn’a) "внутренними околощитовидными железами".

Внутренняя железы лежать у нижнаго полюса дольки щитовидной железы и часто перемѣняютъ свое положеніе. Называются они наружными. Съ щитов. железой онѣ состоять въ посредственной или непосредственной связи. Чаще всего онѣ соединены съ нею рыхлой соединительной тканью, рѣже бываютъ отграниченны мѣшечкомъ жировой ткани, связаны съ щитовидной железой соединительнотканнымъ тяжемъ. Кромѣ того, наружная околощитовидная железы могутъ лежать совершенно независимо отъ щитовидной железы, въ особой, какъ напр. у кроликовъ, капсульѣ. Въ такомъ случаѣ обычное ихъ мѣсто внизу отъ боковой доли щитовидной железы, или, какъ у овцы, въ углу дѣления art. carotidis communis.

Наружныя gl. parathyreoidae встрѣчаются у всѣхъ животныхъ, но въ количественномъ отношеніи являются крайне непостоянными.

Форма ихъ въ большинствѣ случаевъ продолговата, хотя иногда встрѣчаются железы дискообразной формы.

Внутренняя gl. parathyreoidae встрѣчаются не у всѣхъ животныхъ. Отъ наружныхъ онѣ отличаются своимъ положеніемъ подъ капсулой щитовидной железы, образуя въ этой послѣдней вдавленіе, въ которое они наполовину уходятъ, вслѣдствіе чего представляютъ

изъ себя желтоватое пятнышко, слегка возвышающееся надъ поверхностью щитовидной железы своейю центральной частью.

Углубляются ониъ въ послѣднюю не одинаково, и это не только у животныхъ одного и того же вида, но и у однихъ и тѣхъ же животныхъ. Такъ напр., у домашней мыши лѣвая gl. parathyroidea значительно болѣе правой выстоять наружу; у полевой мыши лѣвое совершенно не погружается въ щитовидную железу, правое же вдавлено въ нее только слегка.

Несмотря на столь существенныхъ отличіи околосщитовидныхъ железъ отъ щитовидной, сравнительно еще очень недавно эти железы изслѣдователями совершенно не отличались отъ щитовидной железы. Тогда, конечно, отдѣльного ученія о функцияхъ ихъ не было. Однако и послѣ того, когда существование околосщитовидныхъ железъ отъ щитовидной было установлено, говорить о раздѣльности ихъ функций стали не сразу. Gl. parathyroideaen имѣютъ такую маленькую величину,—съ другой стороны анатомическое и гистологическое сходство ихъ съ щитовидной железой такъ велико, что мысль объ функциональномъ ихъ различи не могла прийти въ голову далеко не сразу.

При опытахъ съ аппаратомъ щитовидныхъ железъ въ большинствѣ случаевъ околосщитовидныя железы изслѣдователями удалялись вмѣстѣ съ щитовидной железой, а происходящія отъ этого измѣнения въ организмѣ относились на счетъ выпаденія влияния послѣдней. Поэтому теорія о функцияхъ щит. железы росла, а ученія о роли околосщитовидныхъ железъ не существовало.

И только постепенно накоплялись факты, благодаря которымъ ученый сталъ ясно, что смѣшивать функции щитовидной и околосщитовидныхъ железъ—дѣло совершенно недопустимое.

Тогда и началось отдѣльное изученіе физіологіи, анатоміи, гистологіи и амбріологіи послѣднихъ. Тогда стали появляться теоріи специально объясняющія функции околосщитовидныхъ железъ.

Исходя частью изъ находокъ, при гистологическомъ изслѣдованіи околосщитовидныхъ железъ, коллоидальныхъ массъ, заключенныхъ въ клѣткахъ и межклѣточныхъ пространствахъ ихъ, частью же изъ послѣоперационныхъ явлений, ученные изслѣдователи пришли къ мысли, что gl. parathyroideaes вырабатываютъ въ своихъ клѣткахъ и выдѣляютъ въ кровеносную систему вещества, необходимое для нормального функционированія животнаго организма, недостаточность котораго количественная или качественная обусловливаетъ собою тяжелая разстройства въ общемъ обмѣнѣ веществъ. Первый
на это указал Н. Königstein 1) на основании микроскопического изслѣдованія ихъ, и къ нему вполнѣ присоединяется Forsyth 2).

Длинный рядъ ученыхъ, старавшихся подобыть къ разрѣшенію вопроса о гл. parathyreoid. путемъ экспериментальному, удавали у животныхъ то всѣ четыре железы, то по отдѣльности каждую, оставляя insinu цитовидную железу, то, наоборотъ, экстирипируя эту послѣднюю, не трогали околоцитовидныхъ железъ и по явленіямъ, наблюдавшимся у организмъ послѣ операций, старались объяснить функциональное значеніе цитовидной и околоцитовидныхъ железъ.

Тетаническіе приступы, зависящие отъ отсутствія функции околоцитовидныхъ железъ получили Vassale and Generali 3), экспериментировавшіе надъ кошками и собаками, Rouxheau 4), на кроликахъ, Gley 6), Moussu 6), Welsch 7), Walbaum 8), Biedl 9), Jeandelize 10), Pineles 11), Maresch, Aschoff, Peuccker. Erdheim 12), и др. Всѣ они наблюдали появленіе тетаническихъ приступовъ, сила и исходъ которыхъ въ большинствѣ случаевъ находились въ прямой зависимости отъ числа экстирипированныхъ железъ. Въ случаяхъ же съ хроническимъ теченіемъ послѣоперационныхъ явлений нѣкоторыми наблюдался болѣе или менѣе ясно выраженный кретинизмъ.

Разстройства, наступающія въ организмъ послѣ частичной или полной экстирипации околоцитовидныхъ железъ, привели перечисленныхъ авторовъ къ мысли, что нормальная функциональная роль ихъ заключается въ продуцированіи чрезъ кровь вырабатываемаго клѣт-
ками ихъ вещества, существенно необходимаго для правильнаго пи- тания клетокъ тканей всего организма и гл. образомъ нервныхъ центровъ.

Позднѣйшіе изслѣдователи, работающіе надъ вопросомъ о вли- яніи околоцитовидныхъ железъ на организмъ на основаніи экспе- риментальныхъ данныхъ пришли къ заключенію, что удаление или вообще недостаточная функция ихъ, обусловливаетъ разстройства въ обмѣнѣ кальціевыхъ солей, а также вообще въ обмѣнѣ солевымъ и азотистымъ.

McCallum и K. Volgtlin 1) полагаютъ, что тяжелые приступы тетаніи, наблюдающіеся послѣ экстраізаціи парацитовидныхъ же- лезъ, можно объяснить пониженіемъ, сравнительно съ нормой, асси- милиационныхъ процессовъ въ отношеніи солей Ca.

М. Павловъ 2), изслѣдуетъ обмѣнъ веществъ, послѣ того или другого нарушения аппарата парацитовидныхъ железъ, на основаніи экспериментальныхъ данныхъ, приходя къ мысли, что функция гл. parathyreoid. касается гл. образомъ химической координаціи ассилиаціонныхъ процессовъ; это положеніе находить себѣ наиболѣе яркое подтвержденіе въ измененіи газообмѣна и качественной сторонѣ азотистаго и солевого обмѣна. Организмъ съ выпаденіемъ влиянія на него, парацитовидныхъ железъ, какъ видно въ данныхъ об- мѣна веществъ теряетъ способность дезассилировать до физіоло- гическаго конца азотистаго и др. вещества чтобы извлечь скрытую въ нихъ потенциальную энергию, а посему обнаружениія силъ орга- низма, его функции значительно упрощаются, становясь на низшія ступени совершенства.

Далѣе, существуетъ группа изслѣдователей, которая совершенно отрицаетъ внутренне-секреторную дѣятельность околоцитовидныхъ железъ; они предложили свою теорію, такъ сказать, теорію разло- женія, согласно которой въ этихъ железахъ происходятъ химиче- ские процессы разложения, нейтрализации продуктовъ регрессивнаго метаморфоза, въ силу чего они являются орудіемъ самозащиты организма отъ накопленія и задержки въ немъ этихъ послѣднихъ. Создающаяся химическая тѣла, не обезвреживающія околоцитовидными железами, имѣютъ избирательныя свойства по отношенію къ цен-
тральной нервной систем и, отравляя ее, вызывают приступы тетаніи. Pineles 1), Mac Collum 2), Lanz 3), Pfeiffer und O. Mayer 4).

Въ виду чисто историческаго интереса, слѣдует упомянуть объ авторах, совершенно отказывающих gl. parathyreoid. въ функциональной самостоятельности. Они смотрят на нихъ, какъ на оста-новившуюся въ періодъ эмбріональнаго развитія щитовидную железу, могущіе, въ случаѣ нужды въ этомъ, доразвиваться и принять на себя роль этой послѣдней. Gley 5), Nicolas, Hoffmeister 6), Blumreich und Jacobi 7), Blum 8), Caro 9).

Въ настоящее время насчитывается болѣе трехсотъ работъ, посвященныхъ выясненію, связанныхъ съ ними вопросовъ и, можно сказать, что окончательное уясненіе ихъ роли и значенія—вопросъ всего нѣсколькихъ лѣтъ.

Изъ приведенныхъ въ общихъ чертахъ главныхъ литературныхъ данныхъ, съ достаточной убѣжденностью выясняется, что выпаденіе влиянія окохолщитовидныхъ железъ на организмъ обусловливаетъ разстройства въ главныхъ жизнеправленіяхъ его и почти всегда сопровождается смертью. Вызываетъ только разногласія самыя механизмы влиянія ихъ на организмъ, отсюда всѣкій экспериментъ, направленный къ выясненію этого, является въ высокой степени желательными и своевременнымъ.

Мы, съ своей стороны, взяли на себя задачу прослѣдить измененія крови въ морфологическомъ и частью въ химическомъ отношеніяхъ послѣ экстраціи железъ.

Интересъ изученія этого имеетъ основаніемъ априорныя заключенія.

Если стать на точку зрения исследователей, признающих за околоцитовидными железами функцию выделения чрез кровь колючего секрета, существенно необходимого для правильного питания организма и нервных центров, то мы должны допустить необходи́мость измельчения крови после экстирации этих желез по двум соображениям.

Разстройство правильного питания всего организма и нервных центров, конечно, не может не отразиться на жизни ткани кровяной, атрофируя или дегенерируя ее.

Согласно с учеными, видящими в околоцитовидных железах место для химических процессов разложения и обезвреживания ядовитых веществ, (Tetaniegif'ta) образующихся при обмывании веществ в организме, с выпадением функции этих желез, нужно признать возможность безпрепятственного проявления этими ядами своего вредного действия на ткани всего организма и в частности на ткань кровяную.

Что химизм организма после удаления околоцитовидных желез взмывается, ясствует из нарушения правильного хода обмена веществ; это выяснено опытами Mac Callum и моими; такое обстоятельство само по себе должно влиять на кровь, как на ткань, первично или вторично через продукты дезасимиляции других тканей.

Исходя из того, что приведенных соображений, мы и взяли на себя задачу проследить измельчение крови после выпадения функции околоцитовидных желез.

Всё опыты мы производили на собаках. Для этого в лабораторию брались здоровые упитанные животные. Съедью привлечения их к лабораторной жизни, предварительно они выдерживались в течение некоторого времени. Когда животное заметно привыкало, бралась кровь для определения ее нормального состава, в течение трех, четырех дней, после чего производилась операция.

Период послеооперационных наблюдений начинался спустя приблизительно неделю. В корм животным получали пшеничную кашу с салом.

Мы не будем здесь касаться техники операции — она описана в моей раннеопубликованной работе 1), взамен этого остановимся на методике измельчения крови.

Во всех опытах содержание гемоглобина в крови определялось гемометром Fleischl'я с капилляром 5.5. Аппарат эрнтов

1) Газообмен и обмен веществ после удаления glandul Thyreoidiae и оставления одной или обеих gl. parathyreoid при различной пище. Записки Император. Харьков. Университета 1912 г. Кн. 1, 2, 3, 4.
иметь то преимущество предъ гемометром Sahli, что сравнительная жидкость, заключенная в запаянной трубке этого последнего, быстро портится, а поэтому при продолжительных опытах не может дать истинных цифр.

Определение железа в крови производилось помощью феррометра lolles'а 1). Сравнительный раствор железа приготавлялся из железных квасцов и из химически чистого Ferrum metallicum. Для этой цели 5 grm. chem. pur. железных квасцов, растворенных в дестилированной воде, осаждались избыtkом аммиака, осадок собирался на фильтр, промывался водою до тех пор, пока фильтрат с азотнокислым барийом не давал осадка или мути. Осадок высушивался и прокаливался. Его отвешивается 0,0357 г и в колбу растворяется в 80 мл 50 grm. кислото срнокислого калия. Из этой колбы берется 22,37 к. с. жидкости и доводится до литра водою. Тогда в литр содержание железа будет равно 0,04978. Для проверки берется 50 к. с. этой жидкости осаждается аммиаком, осадок промывается, взбивается и производится вычисление.

Другой способ, более простой состоял в том, что отвешивается определенное количество Ferrum metall. chem. pur. растворяется в определенном количестве азотной кислоты, содержащей азотистую, и выпаривается. Остаток разводится определенным объемом воды и помощью вычислений узнается содержание Fe в 1 объеме этого раствора, при чем он приготавляется с таким расчетом чтобы 1 к. с. содержал 0,00005 Fe.

Роданистого аммония берется 7,5 grm. на 1 литр. Соляная кислота 1:3.

Удлинный висок крови во всех случаях определялся никрометром Hugershofa. Он имел то преимущество пред другими, что ампулу, в которую помешается кровь, окружает безвоздушное пространство, поэтому кровь несладится почти при 60° тела, т. к. окружающая температура не может оказывать на нее быстрого влияния.

Щелочность крови определялась по способу dr. Engel'я 2) его Близоталлиметром. Способ этот представляет собою видоизмнение способа Löwy-Zuntz'a 3) и состоит в титровании лаковой крови 1/75 н. виннокаменной кислотой до появления на полоске лакмундной бумаги, красного колца, вокруг нанесенной на нее капли

3) Pflügers Arch. Bd. 58.
лаковой крови. Способь этот при извёстном навыкѣ даётъ доволь но удовлетворительные результаты.

Определение объема форменныхъ элементовъ и плазмы производилось помощью тематокрита Чувекаго, при этомъ, въ качествѣ консервирующей жидкости, примѣнялся 2,5% растворъ kalii bichromici. Naegeli O. 1) въ своемъ руководствѣ по болѣзнамъ крови со- вѣтуетъ употреблять физиол. растворъ хлористаго натра, однако по нашимъ наблюдениямъ двухромокисный калий даетъ въ нормальной крови болѣе постоянныя цифры, чьмъ NaCl.

Опытъ № 1.

Собака самецъ; въ Лабораторіи съ 15. II. 12. Кормъ—каша съ саломъ. Операция произведена 21. II. 12. Удалены всѣ гі. пара-thyroideae. 24. II. 12 судороги тоническаго характера; въ промежуткахъ между ними рѣзко выраженное угнетенное состояние. 4. III. exitus letalis. При вскрытии микроскопически не обнаружено никакихъ измѣненій ни во внутреннихъ органахъ, ни въ железахъ съ внутренней секреціей. Эти послѣдняя взятъ для микроскопическаго изслѣдованія. Измѣненія, наблюдаемыя въ составѣ крови слѣдующія:

<table>
<thead>
<tr>
<th>Масштабъ и число</th>
<th>Объемъ</th>
<th>Лейкоциты</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всѣ</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Нв.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Уд. вѣсь</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Исполч.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>форм.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>плазм.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Малые</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Большие</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Переход.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Полная</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Эозинофил.</td>
<td>48</td>
</tr>
</tbody>
</table>

	18/ІІ	10340	38,6	0,485	64	1045	464	50	50	6	9	10	75	—
	19	10265	38,6	0,482	63	1044	482	51	49	8	9	9	74	—
	20	10302	38,7	0,494	66	1045	468	52	48	9	9	11	72	—
среднее	10302	38,6	0,480	64	1045	471	51	49	8	9	10	74	—	
24/ІІ	9780	37,2	0,250	42	1040	292	44	56	18	20	7	54	1	
26/ІІ	10000	37,5	0,287	42	1040	278	43	57	21	9	10	60	—	
28/ІІ	9750	37,6	0,220	40	1038	210	40	60	20	16	6	58	—	
1/ШІ	9520	37,3	0,198	41	1038	174	35	65	21	20	8	49	2	
2/ШІ	9645	37,7	0,216	38	1037	204	40	60	26	14	5	53	2	
3/ШІ	9670	37,2	0,198	38	1038	218	83	62	19	21	4	56	—	

1) Naegeli. O. Blutkrankheiten und Blutdiagnostic, Leipzig, 1908.
Обзор приведенной таблицы с ясностью указывает, что экстраполирована весь расположенных данных вызывает заметного изменения, как в химическом так и морфологическом составе крови. Смерть животного на 12 день после операции.

Отсутствие функциональных проявлений со стороны расположенных железы, при кормлении животного преимущественно углеводной пищей, сказывается следующими изменениями как в общем состоянии организма, так и в отношении химического и морфологического состава крови.

За 12 дней послеоперационного периода влек тяжел упала приблизительно на 60%, при чем наибольшем она представляется на 5 день после операции (26/4) и наименьшим на 8 послеоперационный день (1/1). Температура упала 14,4°C. Так как средняя нормальная 16,7 тяжел данного животного была равна 38,6°C, после же операции она понизилась до 37,2°C. Таким образом в зависимости от составления процентных потерь влека и понижения температуры напрямую зависит сама семья мышц, что или энергии окислительных процессов влек, процессов горения с выделением функций расположенных желез становится не той, как при норме, или же вещества, окисляющиеся и распадающиеся в силу своего изменившегося химического состава, не могут оставаться одинаковым с нормой количеству теплоизолированный. Влек, как жидкой ткани, связывающей в обнаруженные жизненнопроцессов все другая ткани, в се химическом и морфологическом составе можно сказать, что другие ткани, причину указанных явлений.

Количество влека в крови с 0,480 нормальных постепенно понижается и доходить до 0,198, т.e. уменьшается почти на 55%. Между тяжел, как количество Hb в крови уменьшается только на 40,6% ибо в ходе различного 64, содержание его выразилось в 38 по Felisel'ю.

С уменьшением связывающихся O2 агентов Hb, а в нем Fe, естественно что часть окислительных процессов, зависящая от количества кислорода приносимого атоем дыхания должна ослабеть, что, в свою очередь, должно обнаружиться понижением степени щелочной реакции крови. Это, действительно, наблюдается в данном опыте, и понижение степени щелочности крови доходить до 63%.

Вместе с уменьшением содержания Hb и Fe, количество кровяных телец увеличивается в крови уменьшается, а количество жидкой составной кровяной ткани-плазмы, увеличивается. Так как, объем форменных элементов, равняясь при норме в среднем 51%, после
экстраплоции околоситовидных желёз понижается до 35\%, соответственно чему, объем плазмы с 49\% нормальных увеличивается до 65\%.

С уменьшением количества кровяных тельц, удельный вес кровь понижается в послёдоперационном период с 1045 норм. до 1037. Кровяная ткань слёд, как общий, бывший на счет форменных элементов должна упроститься и в отношении морфологического своего состава, и функциональных своих свойств.

В отношении морфологического состава крови изменили в послёдоперационном период выразились в следующем: процентное содержание молодых форм безцветных кровяных тельц лимфатов малых и больших увеличивается первых с 8\% нормальных до 26\%, а лимфоциты большее количественно увеличились с 9\% до 21\%.

Эритрические элементы—переходные формы, наоборот, уменьшаются. Вместо 10\% нормальных содержание их понизилось до 4\%.

Полизарная элементы-полинуклеары являются количественно уменьшенноными с 74\% нормальных до 49\% в послёдоперационном период.

Таким образом в отношении морфологического своего состав крови становится более богатой молодыми элементами и бывает на счет эритрических и полизарных форм безцветных кровяных тельц. Таким образом полное удаление околоситовидных желез оказывает, повидимому, задерживающее влияние на переход молодых безцветных кровяных тельц в эритрические элементы—в переходные формы и в полизарные—полинуклеары. Такая кровь, как имеющая клеточные элементы, не дошедшие в своем развитии до стадии дифференцированный, должна также упроститься и в своих функциональных свойствах. Ибо «объем вещества во всем организме находится в интимной зависимости от лейкоцитов... они могут в силу химических свойств своей протоплазмы притягивать, переваривать и обезвреживать вещества, вредно действующие на организм или даже заключать в свои ядра организованный образований, нужные данному организму. Вообще роль лейкоцитов весьма разнообразна и находится в прямой зависимости от нормальных процентных взаимоотношений отдельных их видов". Красная кровяная тельца, как со стороны хроматофилов, так и в отношении своего строения уклонений от нормы не представляли.
Опыт № 2.

Собака самец в лаборатории с 20/хII П. Въезд 7550 гран t° 38,3°С. Въ пищу получает сырое мясо—конину ad libitum.

4. I 12 удалены три gl. parathyreoidae, оставлена одна наружная лѣвосторонняя gl. parathyreoida и щитовидная железа. 8. 9. II. Коматозное состояние. 9. II. Собака погибла, безъ явленій судорогъ.

<table>
<thead>
<tr>
<th>Месѣцъ и число</th>
<th>Въ смѣсі</th>
<th>t°</th>
<th>Крови</th>
<th>Нв.</th>
<th>Уд. въ смѣсі</th>
<th>Человъ</th>
<th>Форм.</th>
<th>Падам.</th>
<th>Малое</th>
<th>Больше</th>
<th>Переход.</th>
<th>Особен.</th>
<th>Экспанец.</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/хII</td>
<td>7672</td>
<td>38.3</td>
<td>0.5876</td>
<td>67</td>
<td>1.046</td>
<td>533</td>
<td>52</td>
<td>48</td>
<td>7</td>
<td>10</td>
<td>11.70</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>7727</td>
<td>38.2</td>
<td>0.5424</td>
<td>65</td>
<td>1.045</td>
<td>533</td>
<td>51</td>
<td>49</td>
<td>11</td>
<td>13</td>
<td>9.67</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2/II</td>
<td>7639</td>
<td>38.3</td>
<td>0.5824</td>
<td>68</td>
<td>1.047</td>
<td>469</td>
<td>53</td>
<td>47</td>
<td>9</td>
<td>11</td>
<td>13.63</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>7610</td>
<td>38.4</td>
<td>0.5846</td>
<td>67</td>
<td>1.046</td>
<td>533</td>
<td>50</td>
<td>50</td>
<td>4</td>
<td>8</td>
<td>15.71</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>среднее</td>
<td>7712</td>
<td>38.3</td>
<td>0.5742</td>
<td>66.7</td>
<td>1.046</td>
<td>517</td>
<td>51.5</td>
<td>48.5</td>
<td>7.7</td>
<td>10.5</td>
<td>12.67</td>
<td>7</td>
<td>2.3</td>
</tr>
<tr>
<td>10</td>
<td>7775</td>
<td>37.8</td>
<td>0.4732</td>
<td>63</td>
<td>1.043</td>
<td>241</td>
<td>46</td>
<td>54</td>
<td>10</td>
<td>15</td>
<td>23.47</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>7654</td>
<td>37.9</td>
<td>0.4233</td>
<td>61</td>
<td>1.041</td>
<td>318</td>
<td>48</td>
<td>52</td>
<td>5</td>
<td>10</td>
<td>18.60</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>7536</td>
<td>37.4</td>
<td>0.3824</td>
<td>61</td>
<td>1.041</td>
<td>318</td>
<td>49</td>
<td>51</td>
<td>2</td>
<td>3</td>
<td>27.52</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>7740</td>
<td>38.2</td>
<td>0.3314</td>
<td>54</td>
<td>1.040</td>
<td>372</td>
<td>44</td>
<td>56</td>
<td>10</td>
<td>15</td>
<td>22.46</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>7613</td>
<td>37.4</td>
<td>0.3756</td>
<td>53</td>
<td>1.042</td>
<td>296</td>
<td>46</td>
<td>54</td>
<td>9</td>
<td>18</td>
<td>19.50</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>24</td>
<td>7682</td>
<td>37.2</td>
<td></td>
<td>55</td>
<td>1.042</td>
<td>338</td>
<td>43</td>
<td>57</td>
<td>15</td>
<td>13</td>
<td>25.42</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>7510</td>
<td>38.2</td>
<td>0.4535</td>
<td>56</td>
<td>1.042</td>
<td>412</td>
<td>48</td>
<td>52</td>
<td>17</td>
<td>18</td>
<td>18.45</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>7825</td>
<td>37.2</td>
<td>0.4218</td>
<td>50</td>
<td>1.040</td>
<td>454</td>
<td>42</td>
<td>58</td>
<td>10</td>
<td>15</td>
<td>26.41</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>7641</td>
<td>37.5</td>
<td>0.3876</td>
<td>50</td>
<td>1.043</td>
<td>312</td>
<td>47</td>
<td>53</td>
<td>8</td>
<td>15</td>
<td>20.53</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>7719</td>
<td>37.3</td>
<td>0.3576</td>
<td>50</td>
<td>1.039</td>
<td>44</td>
<td>54</td>
<td>6</td>
<td>17</td>
<td>15</td>
<td>15.59</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3/II</td>
<td>7758</td>
<td>37.7</td>
<td>0.3028</td>
<td>46</td>
<td>1.049</td>
<td>322</td>
<td>39</td>
<td>61</td>
<td>11</td>
<td>9</td>
<td>28.46</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>7533</td>
<td>37.6</td>
<td>0.3824</td>
<td>49</td>
<td>1.040</td>
<td>34</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>7596</td>
<td>37.5</td>
<td>0.3032</td>
<td>46</td>
<td>1.039</td>
<td>324</td>
<td>31</td>
<td>69</td>
<td>9</td>
<td>10</td>
<td>21.53</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

При функционировании въ организмѣ одной наружной лѣво- сторонней gl. parathyreoidae, продолжительность жизни животного равняется 36 днамъ, при кормлении мясомъ ad libitum.

Средний въ съ тѣла при нормѣ равняется 7712 грамм. Въ послѣоперационномъ периодѣ колебания его представляютъ довольно невысокими. На шестой, четырнадцатый, двадцатый вторая, двадцать третий, двадцать седьмой и тридцатый послѣоперационные дни въ съ тѣла является значительно большимъ, чѣмъ при нормѣ, въ промежуточъ же между ними падаетъ ниже ея. Въ среднемъ однако въ съ упала на 1.50%.

Животное питалось мясомъ. Количество его, съѣдаемаго во всѣ дни послѣоперационнаго периода, было почти одинаковымъ.

Разсматривая таблицу, съ ясностью отмѣчаешь, что пріемъ пищи,
вчрьгье, последствия приема прямо таки губительны. Накопление про- дуктов неправильной ассимиляции влечет гибель живых элементов.

Температура тьлы во вчэ дни послёоперационного периода представляетя пониженной,— въ среднемъ на дневіе t° равняется 1,8°. След. процент пониженія t° одинаковъ съ тымъ, что нами наблюдалось при полномъ отсутствіи функции околощитовидныхъ железъ.

Процентное содержаніе Fe въ крови понизилось на 33,4°. Количество Hb также уменьшилось на 18,8°, т. е., по сравненію съ Fe, почти въ два раза.

Удѣл. вѣсь крови съ 1046 понизился до 1043.

Щелочность крови въ среднемъ представляется пониженной на 34,8°. Въ колебаніяхъ же суточныхъ щелочность иногда падаетъ значительно ниже. Объемъ форменныхъ элементовъ съ 51,5 понизился до 43,8, соответствственно этому процентное содержаніе плазмы повысились до 56,6° нормальныхъ 48,5°.

Процентное содержаніе лимфоцитовъ малыхъ и большихъ увеличено. Первыхъ съ 7,7° нормальныхъ до 9,3°; вторыхъ съ 10,5° до 13,1°. Наиболѣе рѣзкое повышение процентнаго содержанія наблюдается въ переходныхъ формахъ, количество ихъ съ 12° нормальныхъ увеличилось до 21,8°. Наоборотъ, процентное содержаніе полинуклеаровъ уменьшено. Среднее нормальное процентное содержаніе ихъ равнялось 67,7°; въ послѣоперационномъ пе- риодѣ количество ихъ понизилось до 49,5°. Эозинофилы количественно увеличилось до 6°, равняясь при нормѣ 2,3°.

Такимъ образомъ въ данныхъ морфологическаго состава крови съ убѣдительностью вытекаетъ, что нормальный ходъ кроветворенія нарушенъ. Несмотря на увеличения процентнаго содержанія молодыхъ элементовъ, можно думать, что рождаются они въ менѣе количествѣ, сравнительно съ нормой; наблюдаемое же увеличеніе ихъ всѣцѣло должно быть объяснено замедленнымъ развитіемъ ихъ и переходомъ въ высшія формы. Но этой причинѣ процентное содержаніе полинуклеаровъ рѣзко уменьшено. Слѣдовательно, функциональное одно наружной околощитовидной железы вѣсколько уди- няетъ жизнь животного, и тѣ измѣненія въ составѣ крови, которыя наблюдаются черезъ 12 дней послѣ полаго удаления околощитовидныхъ железъ, при оставленіи этой железы, наступаютъ черезъ 36 дней.

Нельзя, конечно, этимъ морфологическимъ измѣненіемъ разсматривать, какъ первопричину смерти животного,—она скорѣе кроется въ из- вращеніи физико-химическихъ свойствъ крови, какъ питательно-дыхательной среды и единственнаго посредника обмѣна веществъ между клѣтками организма и внѣшней средой."
Собака, самец, в лаборатории с 23. XII. 11. Вес 8500 grm. \(1^\circ\) 38,5°С.

В пищу получает шицевый кулец с салом.

Ч. 1. 12. Операция—удалены дв 2 gl, parathyreoidae внутренних, оставлены дв 2 gl. parathyreoidae наружных щитовидная железа.

Спустя месяц после операции начала отмечается перемена в характере животного.—Оно стало вялым, неподвижным и начало замыкать толстеть. Прожила до 5 мая 1912 г.

<table>
<thead>
<tr>
<th>Месяцы</th>
<th>Вес</th>
<th>Hb</th>
<th>Ie</th>
<th>Кровь</th>
<th>Мурен.</th>
<th>Henry</th>
<th>Шелон.</th>
<th>Общее</th>
<th>Малые</th>
<th>Больные</th>
<th>Переход.</th>
<th>Полез.</th>
<th>Эффем.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8700</td>
<td>38.7</td>
<td>74</td>
<td>0.572</td>
<td>1045</td>
<td>0.466</td>
<td>51</td>
<td>49</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>74</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8905</td>
<td>38.7</td>
<td>72</td>
<td>0.5292</td>
<td>1045</td>
<td>0.466</td>
<td>54</td>
<td>46</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>73</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>8892</td>
<td>38.5</td>
<td>73</td>
<td>0.572</td>
<td>1046</td>
<td>0.423</td>
<td>52</td>
<td>48</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8930</td>
<td>38.3</td>
<td>70</td>
<td>0.566</td>
<td>1045</td>
<td>0.457</td>
<td>51</td>
<td>49</td>
<td>4</td>
<td>6</td>
<td>16</td>
<td>71</td>
<td>3</td>
</tr>
<tr>
<td>Среднее</td>
<td>8857</td>
<td>38.5</td>
<td>72.2</td>
<td>0.5598</td>
<td>1045</td>
<td>0.453</td>
<td>52</td>
<td>48</td>
<td>5.2</td>
<td>8</td>
<td>12</td>
<td>73</td>
<td>1.5</td>
</tr>
</tbody>
</table>

При функционировании в организме щитовидной железы и двух наружных околощитовидных, жизнь животного тянется четыре месяца.

Весь тела впродолжении месяца после операции оставался приблизительно равным норме; во второй половине марта и апреля, т. е. спустя 21/2—31/2 месяца после операции весь тела увеличился на 44% и на 12.6%, в среднем же весь остался в пределах нормы (—1.1%). Таким образом количество входящих в со-
став тела веществ, повидимому, не изменило, изменень, надо думать, только качественный их характер, что видно из следующего.

Температура тела в среднем понизилась на 0,4°С. В март и апрель, на пей с наивысшим в тепло время года, наблюдается наименьшая температура 37.37.2°С (норма 38.5°С).

Изменений в составе крови выражаются в следующем.

Содержание Hb в крови 72.2 нормальных понизилось в среднем до 52.5 по Fleischl'ю, т. е. на 27.2%0. Уменьшилось также и содержание в крови Еe, но процент уменьшения его значительно больший, чем Hb——40,1%0.

Удельный вес крови понизился в среднем до 1.040 с 1.045 нормальных.

Щелочная реакция крови, равная при норме 0.453, в послеоперационном периоде падала до 0,230 мгр. NoOH, т. е. на 49.2%0.

Количество кровяных тельцей в каждой единице объема крови с 52 уменьшилось до 43.5, соответственно этому содержание плазмы увеличилось до 56.5.

Процентное содержание в крови лимфоцитов малых уменьшилось с 5,2%0 нормальных до 8.3%0. Наоборот, количество лимфоцитов больших стало меньше нормы. При норме их было 8%0 после операции—7%0.

Переходная форма с 12%0 нормальных количество уве личилось до 16%0.

Процентное содержание полициклических уменьшино до 67%0, вместили нормальных 73%0. Количество эозинофилов осталось приблизительно в пределах нормы.—(1,5%0 и 1,2%0).

По сравнению с предыдущим опытом, разница наблюдается в процентном содержании лимфоцитов больших. Развитие кровяных тельцей и здесь затруднено, в силу чего количество полициклических ослабленным, переходом в них лимфоцитов малых, или ускоренным метаморфозом их в переходная форма, на стадии которых кровяния тельца остаются более продолжительное, чем при норме, время.

Поздому, можно думать, что съ высказанием функции двух внутренних околоцитовидных желез, организмом теряется регулирующее начало по отношению к созданию высших форм клеточных элементов.
Опыт № 4.

Для этого опыта взята в лабораторию 12. II. 12—собачка самец. Весь 12340 grm. темп. 38,5°С. Кормъ—именный куличъ съ саломъ.

17. II. произведена операция—удалены дивъ наружній gl. parathyreoidae; оставлены дивъ внутренній и щитовидная железа 18 II. и 5 III. рѣзко выраженные судороги.

Собачка похила 22. III. 12, т. е. черезъ 35 дней послѣ операции. Къ концу послѣоперационного периода шерсть обгвали.

<table>
<thead>
<tr>
<th>Мѣсяцъ и число</th>
<th>Весь</th>
<th>Fe</th>
<th>Кровь</th>
<th>Нб</th>
<th>Удал. въ %</th>
<th>Объемъ</th>
<th>Лимфоид.</th>
<th>Мац.</th>
<th>Больш.</th>
<th>Перенос.</th>
<th>Полив.</th>
<th>Эоз.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-й</td>
<td>12532</td>
<td>38,3</td>
<td>0,677</td>
<td>70</td>
<td>1047</td>
<td>43</td>
<td>57</td>
<td>0,438</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>12694</td>
<td>38,5</td>
<td>0,686</td>
<td>71</td>
<td>1047</td>
<td>44</td>
<td>56</td>
<td>0,482</td>
<td>9</td>
<td>6</td>
<td>12</td>
<td>73</td>
</tr>
<tr>
<td>17</td>
<td>12785</td>
<td>38,5</td>
<td>0,682</td>
<td>—</td>
<td>1047</td>
<td>42</td>
<td>58</td>
<td>0,436</td>
<td>15</td>
<td>10</td>
<td>9</td>
<td>66</td>
</tr>
</tbody>
</table>

Среднее. 12673 38,4 681,6 70,5 1047 43 57 0,452 12 8 10,3 69 0,7

<table>
<thead>
<tr>
<th>число</th>
<th>19</th>
<th>21</th>
<th>23</th>
<th>25</th>
<th>28</th>
<th>2ш</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>17</th>
<th>20</th>
<th>Среднее</th>
</tr>
</thead>
<tbody>
<tr>
<td>2630</td>
<td>37,2</td>
<td>0,564</td>
<td>62</td>
<td>1042</td>
<td>40</td>
<td>60</td>
<td>0,376</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>62</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2485</td>
<td>37,7</td>
<td>0,572</td>
<td>60</td>
<td>1043</td>
<td>38</td>
<td>62</td>
<td>0,376</td>
<td>12</td>
<td>23</td>
<td>17</td>
<td>48</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2340</td>
<td>38,1</td>
<td>0,556</td>
<td>58</td>
<td>1042</td>
<td>36</td>
<td>64</td>
<td>0,325</td>
<td>8</td>
<td>27</td>
<td>12</td>
<td>53</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12122</td>
<td>37,5</td>
<td>0,521</td>
<td>58</td>
<td>1040</td>
<td>37</td>
<td>63</td>
<td>0,354</td>
<td>14</td>
<td>19</td>
<td>15</td>
<td>50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12000</td>
<td>37,5</td>
<td>0,476</td>
<td>47</td>
<td>1039</td>
<td>30</td>
<td>70</td>
<td>0,550</td>
<td>9</td>
<td>27</td>
<td>18</td>
<td>45</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12200</td>
<td>37,1</td>
<td>0,218</td>
<td>32</td>
<td>1036</td>
<td>20</td>
<td>80</td>
<td>0,310</td>
<td>15</td>
<td>21</td>
<td>20</td>
<td>41</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12080</td>
<td>37,6</td>
<td>0,204</td>
<td>30</td>
<td>1035</td>
<td>22</td>
<td>78</td>
<td>0,318</td>
<td>13</td>
<td>21</td>
<td>19</td>
<td>47</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11870</td>
<td>37,5</td>
<td>0,320</td>
<td>32</td>
<td>1035</td>
<td>24</td>
<td>76</td>
<td>0,334</td>
<td>12</td>
<td>21</td>
<td>13</td>
<td>54</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11700</td>
<td>37,8</td>
<td>0,198</td>
<td>34</td>
<td>1034</td>
<td>22</td>
<td>78</td>
<td>0,348</td>
<td>16</td>
<td>18</td>
<td>16</td>
<td>50</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12020</td>
<td>37,4</td>
<td>0,166</td>
<td>29</td>
<td>1035</td>
<td>22</td>
<td>78</td>
<td>0,312</td>
<td>12</td>
<td>33</td>
<td>11</td>
<td>44</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12235</td>
<td>37,2</td>
<td>0,210</td>
<td>38</td>
<td>1033</td>
<td>25</td>
<td>75</td>
<td>0,356</td>
<td>14</td>
<td>32</td>
<td>9</td>
<td>43</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12160</td>
<td>37,0</td>
<td>0,202</td>
<td>32</td>
<td>1034</td>
<td>24</td>
<td>76</td>
<td>0,330</td>
<td>10</td>
<td>21</td>
<td>19</td>
<td>51</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12000</td>
<td>36,8</td>
<td>0,189</td>
<td>30</td>
<td>1033</td>
<td>23</td>
<td>77</td>
<td>0,350</td>
<td>9</td>
<td>20</td>
<td>14</td>
<td>56</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12190</td>
<td>37,4</td>
<td>0,246</td>
<td>30</td>
<td>1032</td>
<td>28</td>
<td>72</td>
<td>0,224</td>
<td>13</td>
<td>20</td>
<td>18</td>
<td>49</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Среднее. 12124 37,4 0,324 41 1037 28 72 0,333 12 22,5 15 49,5 0,9

Измѣнения въ составѣ крови и въ общемъ status organismа, наступающія при отсутствіи функции обѣихъ наружныхъ околощитовидныхъ желѣзъ, не аналогичны наблюдаемымъ нами въ предыдущихъ опытахъ и сводятся къ слѣдующему:

Въ тѣло за 35 дней жизни животного послѣ операции упалъ на 6 1/0. Падение вѣса на 6/0 обусловило смерть животного. При равномѣрномъ распадѣ всѣхъ тканей гибель животного наступаетъ при потерь въ 40—50/0 своего вѣса. Значитъ, здѣсь въ нашемъ
случае происходит распад чего-то, существенно необходимого для организма. Температура понизилась в среднем на 1°C.

Содержание Fe в крови с 0,681,6 нормальных в среднем понизилось до 0,324, т. е. на 52,4%. В последний день послерод. периода понижение равно 78,5%.

Количество Hb съ 70,5 по Fleischl'ю уменьшилось до 41 на 40,4%.

Удельный въ крови въ среднем понизился до 1,037 вместо 1047.

Щелочная реакция крови понизилась въ среднем съ 0,452 до 0,333.

Наибольшее же понижение равное 50,4% наблюдалось въ послѣдній день жизни животнаго.

Содержание въ крови форменныхъ элементовъ уменьшается, плаэмы же наоборотъ увеличивается. Объемъ форменныхъ элементовъ съ 43% понизился до 28%, а объемъ плазмы повысился до 72%, вместо нормальныхъ 57%.

Измѣненія въ морфологическомъ составѣ крови суть слѣдующія.

Процентное содержание лимфоцитовъ мальыхъ, въ противоположность предыдущимъ опытамъ, остается равнымъ нормѣ (12% и 12%). Между тѣмъ, какъ содержание лимфоцитовъ большихъ рѣзко увеличивается. При нормѣ ихъ найдено 8%, въ послеродовательномъ периодѣ—22,5%.

Повышается также процентное содержание переходныхъ формъ съ 10,3% до 15% въ среднем.

Количество полинуклеаровъ, наоборотъ, рѣзко уменьшается.

Среднее нормальное процентное содержание ихъ равняется 69%, при патологіи—49,5%.

Эозинофилии съ 0,7% уменьшились до 0,9%.

Въ строеніи красныхъ кровяныхъ тѣлцевъ измѣненій не обнаружено. Окрашиваемость ихъ представляется въ значительной степени ослабленной.

Въ виду того, что лимфоциты малые остаются въ предѣлахъ нормы, можно думать, что рождаемость безцѣльныхъ кровяныхъ тѣлецъ происходит въ нормальныхъ предѣлахъ, затрудненъ только переходъ нижнихъ формъ въ высшіе элементы. Съ выпаденіемъ функции одной наружной околовитовидной железы, процентное содержаніе лимфоцитовъ мальыхъ увеличено, съ выпаденіемъ обѣихъ, равно нормѣ.
Опыт № 5.

Собака самка в лаборатории с 10. XII. 11 г. Вес 5500. \(t^\circ 38,5^\circ \mathrm{C} \).

В пищу получает лишенный куление с салом.

Изследование крови дало нижеследующие результаты.

<table>
<thead>
<tr>
<th>Месяц и число</th>
<th>Объем крови (\mu)</th>
<th>Гемоглобин Hb</th>
<th>Удельный вес крови</th>
<th>Нейтрофиль</th>
<th>Эозинофиль</th>
<th>Лимфоциты</th>
<th>Базофиль</th>
<th>Средн.</th>
<th>Переход.</th>
<th>Лейкоциты</th>
<th>Эозинофилы</th>
<th>Фильтрация</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.хн</td>
<td>5690</td>
<td>38.8</td>
<td>0.6968</td>
<td>72</td>
<td>10480.426</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>68</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>5590</td>
<td>38.2</td>
<td>0.6968</td>
<td>74</td>
<td>10478.0469</td>
<td>49</td>
<td>51</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>5650</td>
<td>38.5</td>
<td>0.6969</td>
<td>72</td>
<td>10470.441</td>
<td>51</td>
<td>49</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>70</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>5470</td>
<td>38.2</td>
<td>—</td>
<td>70</td>
<td>10480.426</td>
<td>48</td>
<td>52</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>67</td>
<td>6</td>
</tr>
</tbody>
</table>

Среднее: 5600 38.4 0.6968 72 10475.434 49.3 50.7 7.7 9.7 8.7 67 6.7

22	5910	38.4	—	—	—	—	—	—	—	—	—	—
28	5425	37.2	0.4646	65	10420.341	42	58	12	20	8	48	12
29	6253	37.5	0.4646	61	10380.324	46	54	5	15	8	52	20
5/1	5270	37.7	0.4646	58	10320.233	43	57	7	14	22	56	2
7	5780	37.3	0.4314	60	10360.267	41	59	9	23	26	37	5
10	5845	37.1	0.4271	62	10350.312	40	60	11	14	25	46	2
13	4320	38.4	0.4236	56	10380.324	42	58	8	19	21	53	4
16	4618	37.3	0.4378	52	10340.280	48	62	12	11	28	48	1
21	4490	36.5	0.4666	52	10380.292	40	60	7	16	23	52	2
30	4550	38.0	0.4299	50	10390.301	40	60	9	15	25	48	3

Среднее: — 37.5 0.4454 57.3 1.03660.294 41.3 58.7 8.8 16.3 20.6 48.9 5.6

Лишение организма трех околоочковидных желез обусловливает следующий изменения, как к общему состоянию его, так и в составе крови.

Вес тела равный при норме 5600 понизился в конце постоперационного периода до 4550 т. е., на 18.7%.

Температура с 38.4°C упала до 37 до 37.5°C.

Количество Fe в крови уменьшилось на 36%, так как среднее нормальное содержание его было равно 0.6968, в постоперационном же периоде оно стало равным 0.4454.

Уменьшилось также и содержание в крови Hb в среднем...
съ 72 до 57.3 по Fleischl’ю, т. е. на 20.4\% . Таким образом проценты уменьшения Hb и Fe не одинаковы, но вторая величина пре-
вышает первую.

Щелочная реакция крови понизилась в среднем до 0.294,
т. е. на 32.2\% .

Объемная отношения между форменными элементами и жидкой
составной частью крови—плазмой изменились в сторону уменьшения
процентного содержания плазмы и уменьшения количества кровяных
těлец.

Удлётный въсь крови, стоящей отчасти в зависимости от этих объёмных отношений, съ 1047 понизился до 1036 или на 22.9\%.

Процентное содержание молодых и зрёлых форм безцветных кровяных тёлец резко увеличено. Среднее нормальное коли-
чество лимфоцитов малахт 7.7\%, въ постоперационном периодѣ
оно увеличилось до 8.8\% т. е. на 14.3\%. Количество лимфоцитовъ
больших увеличилось до 16.3\%, будучи равно при нормѣ въ сред-
немъ 9.7\%.

Переходная формы являются также количественно увеличен-
ными съ 8.7\% до 20.6\%, т. е. на 136.8\%. Процентное содержание
полинуклеаровъ, наоборотъ, уменьшено. Среднее нормальное содер-
жание ихъ было равное 67\%, въ постопераций четырёхъ по
понизилось до 48.9\% т. е., на 27\%. Таким образомъ изъ разсмотрѣнія та-
блицы морфологическаго состава крови животнаго, имѣющаго норм-
альная функционирующей только лѣвостороннюю внутреннюю около-
щитовидную железу, съ несомнѣнностью обнаруживается и увеличен-
ная рождаемость безцвѣтныхъ кровяныхъ тѣлъцъ, и ослабленный,
переходъ ихъ въ полинуклеары.

Итогируя вышеизложенное мы должны отмѣтить, что наруше-
ние цѣлости аппарата околощитовидныхъ железъ обусловливаетъ зна-
чительно выраженные измѣненія въ общемъ состояніи организма и
въ составѣ крови, которая сводится къ слѣдующему.

При полной экстериации всѣхъ околощитовидныхъ железъ про-
должительность жизни животнаго равняется въ среднемъ 12 днямъ.
Въ животнаго за этотъ периодъ упала на 6\%. Такая небольшая потеря въ въсь, конечно, не могла повести животное къ смерти,
если бы всѣ ткани и органы организма, распадаясь равномерно,
дари бы въ общемъ 6\%.

Скорѣе можно предполагать, что въ потеряхъ въсь участвовала
какая-либо одна ткань, напр. нервая, убыль 6\% въсь которой
обусловило невозможность жизни организма.
При функционировании в организме одной наружной дыхательной околососудистой железы, жизнь тьсятается 36 дней; уменьшение въсса тьла равняется 1.5%.

Оставление въ организмѣ двухъ наружныхъ околососудистыхъ железъ уничтожаетъ жизнь животнаго до четырехъ мѣсяцевъ, въсъ же его остается въ предѣлахъ нормального. Такимъ образомъ организмъ количественно не дефицировался на счетъ своихъ составныхъ, скорѣе, надо думать, въ немъ происходили измѣненія качественного характера, такъ какъ въ послѣоперационномъ періоде наступили рѣзко выраженные трофическія разстройства: выпаденіе шерсти, отечность кожи, общая одутоватость, и измѣненіе характера животнаго—онъ сдѣлался апатичнымъ неподвижнымъ.

При функционировании въ организмѣ двухъ внутреннихъ gl. parathyreoid. жизнь тянется 35 дней. Въсъ тьла за это время понизился на 61%, т. е. на столько же, на сколько въ первомъ опытѣ, где были удалены всѣ околососудистыя железы. Поэтому, надо думать, причина смерти животнаго въ обоихъ опытахъ одинакова.

Продолжительность послѣоперационнаго періода равняется 37 днямъ, при функционировании въ организмѣ одной внутренней правосторонней околососудистой железы. Въсъ тьла упалъ на 18%.

Такимъ образомъ вѣсь тьла въ 1, 2, 4 и 5 опытахъ падаетъ.

Въ организмѣ животнаго, слѣд., распадъ тканей собственного тьла превалировать надъ построениемъ ихъ изъ приносимаго питательнаго материала. Обусловиться это могло нѣсколькою возможностями.

Или въ организмѣ процессы синтетическіе, процессы возстановленія, имѣющіе назначеніе образованіе необходимаго для жизни тканей строительнаго материала, съ удалениемъ околососудистыхъ железъ, извращаются, вслѣдствіе чего не происходить образованіе соединеній съ болѣйшимъ молекулярнымъ вѣсомъ изъ соединеній малаго молекулярнаго вѣса, не происходить освобожденіе скрытой въ нихъ энергіи, а посему вѣсь тьла падаетъ.

Возможно допустить, что въ организмѣ преобладали дезасимилиационные процессы, имѣющіе основой своей усиліе процессовъ распада по отношенію ко всѣмъ химическимъ составнымъ или же по отношенію къ какой-либо одной изъ нихъ.

Можетъ быть, съ выпаденіемъ функции околососудистыхъ железъ, удаление продуктовъ распада, докисленіе ихъ до выводимыхъ изъ тѣла самой клѣтки веществъ, затруднено, въ силу чего они своими присутствіемъ въ клѣткѣ, отравляя ее, задерживаютъ нормальное теченіе процессовъ жизни.
Гибель животного однако не находитя в зависимости отъ вѣсовъ потерь—онъ не дошли до роковыхъ 45—50%.

Иная причины обусловили ея, къ выяснению которыхъ мы отчасти приближаемся путемъ нашихъ экспериментовъ.

Щелочность крови во всѣхъ опытахъ послѣ того или другого нарушения цѣлости аппарата щитовидныхъ железъ понижается.

Это пониженіе можетъ обусловливать слѣдующими причинами:
а) квантитетнымъ уменьшеніемъ солей генераторовъ ея или б) накопленіемъ въ организмѣ кислотъ продуктовъ обмѣна, нейтралізующихъ ее.

По современному состоянію въ физической химии вопроса о реакціяхъ признается, что степень ея обусловливается присутствиемъ въ растворѣ свободныхъ Н или OH іоновъ въ извѣстной концентраціи.

Въ случаяхъ, когда они входятъ въ полное взаимное обмѣнное разложеніе, т. е. при равновѣсьи ихъ, реакція данной жидкости будетъ нейтральной. При преобладаніи же іоновъ Н и OH, жидкости сообщается или кислая или щелочная реакція.

По мнѣнію большинства ученыхъ кровь признается за жидкость щелочной реакціи. Такъ какъ проявленіе всякаго рода дѣятельности клѣтокъ и тканей организма связано съ непрерывно совершающимися процессами разрушенія и возстановленія потрѣченаго, то, для поддержанія щелочной реакціи на извѣстной степени, существенно необходимо присутствіе тѣхъ веществъ, которыя являются генераторами свободныхъ Н іоновъ. Отсутствіе этихъ послѣднихъ или преобладаніе въ крови свободныхъ OH іоновъ обусловливаетъ измѣненіе реакціи крови въ сторону понижения степени щелочности.

Въ нашихъ опытахъ, слѣд., непосредственное физиологическое дѣйствіе Н іоновъ ослабивается. Кровь дѣлается менѣ щелочной, а слѣд., функция тканеваго дыханія, нормально стоящая въ зависимости отъ степени щелочности крови, имѣющая своимъ назначеніемъ окисленіе и экскрецію продуктовъ обратнаго метаморфоза, становится менѣ совершеннѣй, менѣ благопріятное вліяніе оказываетъ она на процессы, какъ ассиміляціонныя, такъ и дезассиміляціонныя.

Содержаніе Hb и Fe въ крови во всѣхъ опытахъ понижается.

Уменьшеніе процентнаго содержанія въ крови этихъ веществъ указываетъ на перестройкѣ химическаго состава клѣточныхъ элементовъ кровяной ткани въ сторону ихъ упрощенія, на обратный ходъ развития и дифференціаціи крови.

Проф. А. В. Репрѣвъ говоритъ, что „количество Hb растеть
отъ низшихъ животныхъ къ высшимъ, отъ младенческаго возраста къ зрѣлому” 1).

По изслѣдованіямъ Abderhalten'a 2) „абсолютная количества Hb меньше всего при рождении, но постепенно повышаются въ періодъ кормленія молокомъ матери“.

Стлѣдовательно, съ уменьшеніемъ въ крови животного Fe и Hb, нормальными физиологическія функціональныя свойства красныхъ кровяныхъ тѣлѣцъ, свойства связыванія содержащимся въ Hb желѣзомъ кислороду ослабѣваютъ. Ослабѣваютъ поэтому и извращаются процессы тканевого дыханія и внутриорганическаго окисленія, измѣнивъ свое назначеніе поддержание строго физиологическаго равновѣсія между образованіемъ въ организмѣ и экскреціею изъ него продуктовъ обратнаго метаморфоза клѣтокъ тканей. Причина такого уменьшенія Fe и Hb, нужно думать, кроется въ нарушеніи синтетическіи процессовъ организма.

Объемъ форменныхъ элементовъ уменьшается, объемъ плазмы увеличивается. Кровяныя тѣльца слѣд. или уменьшаются въ чисѣ, или становятся меньшими по величинѣ, или же, наконецъ, кровь становится гидремическѣе. Во всѣхъ случаяхъ это будетъ говорить о перерожденіи крови—эя атрофіи количественнаго или качественнаго характера.

Измѣненія процентныхъ соотношеній отдѣльныхъ видовъ безцвѣтныхъ кровяныхъ тѣлѣцъ выражаются въ рѣзкомъ повышеніи процентнаго содержанія лимфоцитовъ малыхъ въ 1, 2, 3 и 5 опытахъ, большихъ въ опытѣ № 1, № 2, № 4 и № 5, переходныхъ формъ во 2, 3, 4 и 5 опытахъ и уменьшеніи переходныхъ въ опытѣ № 1 и во всѣхъ опытахъ—полинуклеаровъ.

Такая картина крови стоитъ въ полномъ соответствіи съ разобранными измѣненіями въ составѣ крови, вполнѣ подтверждая выскаженную нами мысль объ обратномъ развитіи кровяной ткани, о перерожденіи ея клѣточныхъ элементовъ.

Повышеніе содержанія въ крови безцвѣтныхъ кровяныхъ тѣлѣцъ можетъ оказать извѣстное благоприятное влияніе на процессы ассилипціи и дезассилипціи вообще и на ферментативныя процессы въ особенности только въ томъ случаѣ, когда преобладающимъ большинствомъ ихъ, какъ при нормѣ, будутъ зрѣлыми формы, такъ какъ

1) Проф. Репрецетъ. Основы общей и экспериментальной патологіи. Харьковъ. 1908, стр. 505.
2) А. М. Черенковъ. Руководство къ изученію нормальной физіологіи человѣка. Харьковъ. 1907.
чрезвычайно важная и высокая физиологическая роль, которая при- надлежит безцветным кровяным тельцам, носящим в себе защитительную силу организма, не может быть отдана молодым, незрелым, недостаточно дифференцированным формам.

С развитием учений о ферментативной функции безцветных кровяных тельц, все более и более выступает громадная роль в этих процессах полинуклеарных лейкоцитов.

Таким образом измнение процентных соотношений отдельных видов безцветных кровяных тельц, наступающее после нарушения целости аппарата оконоцитовидных желез, есть, без сомнения, лишь внешнее проявление нарушения более глубоких, более интимных процессов, в основе которого лежит воздействие химической саморегуляции между отдельными внутренние секреторными железами.

Охватывая обширный возврот влияние на организм выпадений функции оконоцитовидных желез, нельзя не признать всей важности их для нормальной жизни всего организма и в частности — кровяной ткани.

Отсутствие влияния их на кровь вызывает резкое измнение со стороны свящующих O₂ вещество — Н₂ и Фе, поникает щелочность крови, уменьшает объем форменных элементов и производит резкое измнение со стороны лейкоцитарных процентных взаимоотношений и, наконец, влияет ради этого на ферментативные процессы организма.

Что же касается ближайшего действия выпадений внутреннего секрета оконоцитовидных желез, нарушающего сложнейший механизм тончайших взаимоотношений отдельных органов и тканей животного организма, механизм химической саморегуляции, который осуществляется путем внутреннего секрета, то предъявлять интересный вопрос не представляется — ли собой секрет оконоцитовидных желез гормон, содействующий клеткам тканей разрушать до положенного по физиологическому шаблону предела приносимый к ним питательный материал и синтезировать из него высшее формы белковых и других протоплазматических соединений.

Заканчивая настоящую работу я позволю себе высказать надежду, что дальнейшее мои изслеживания по этому вопросу, поставленным с целью выяснения ферментативной функции лейкоцитов, прольют нкоторый свет на физиологическую роль оконоцитовидных желез, лишение организма которых обусловливает таки резкое измнение и со стороны крови и со стороны газо и обмнна веществ.